酒基钻井完井液对页岩储层保护能力评价

摘 要

摘 要:在中国,页岩气储层长水平井段钻进中普遍采用油基钻井完井液,钻进过程中时常发生井壁垮塌和漏失,不得不频繁处理井下事故,导致页岩段钻井速度慢,浸泡时间长,引发严重的储层损

摘 要:在中国,页岩气储层长水平井段钻进中普遍采用油基钻井完井液,钻进过程中时常发生井壁垮塌和漏失,不得不频繁处理井下事故,导致页岩段钻井速度慢,浸泡时间长,引发严重的储层损害问题。为了探究油基钻井完井液对页岩储层的损害机理及防治策略,以四川盆地志留系龙马溪组和寒武系牛蹄塘组页岩为研究对象,开展了页岩储层敏感性评价、油基钻井完井液静态和动态损害评价系列实验。结果表明,油基钻井完井液滤液对裂缝岩样的损害率为63.5%~99.9%,体系动态损害率为49.0%~87.2%,综合损害程度为中等——强。结论认为:固相侵入、油相圈闭损害、碱敏损害、流  固耦合强化的应力敏感损害是主要的损害方式;及时高效封堵裂缝、降低滤失量、控制合理的pH值和正压差,并与井眼轨迹优化设计相结合既是强化页岩井壁稳定的技术对策,也是提高油基钻井完井液保护页岩气储层能力的重要途径。

关键词:页岩  裂缝(岩石)  岩样  油基  钻井完井液  储集层损害  保护措施

Damage evaluation of oil-based drill-in fluids to shale reservoirs

AbstractCurrentlyoil-based drill-in fluids have been widely used in China to prevent the frequent collapse and leakage of well borehole during long lateral horizontal drilling targeting organic-rich shale reservoirsHoweverwellbore instability still happens frequently during drilling processWhen such complicated downhole drilling accidents are dealt withdrilling speeds and trips will beslowed down and the reservoir rocks will be soaked for a long timeresulting in significantly serious formation damageThereforethis paper aims to explore the damage mechanism of oil-based drill in fluids to shale reservoirs and to acquire prevention strategiesCollecting gas shale cores from the Silurian Longmaxi and Cambrian Niutitang Fins in the Sichuan Basinwe made an evaluation analysis of shale formation sensitivity and conducted experiments of oil based drill in fluids’static and dynamic damage to shale formationsResults showed that the static damage rate ranged from 63.5 to 99.9%,while the system dynamic damage rate from 49.0 to 87.2%,which means a moderate to strong damage as a wholeIt was considered that major damage factors include solid phase intrusionalkali sensitivity damageoil phase trapping damageand stress sensitivity damage enhanced by fluid solid interactionOn this basiswe presented that combining efficient fracture pluggingpH value optimizingfiltration volume and positive pressure differential control with an optimal well traj ectory design can not only strengthen the shale wellbore stabilitybut provide an effective way to mitigate the formation damage of oil based drill in fluids

Keywordsshalefracture(rock)coreoil-based drill-in fluidsreservoir damagereservoir protection measure

与水基钻井液相比,油基钻井液在抑制页岩水化膨胀,润滑防卡,维持井壁稳定以及快速钻进等方面具有明显的优势,已成为钻探高温深井、海上钻井、大斜度定向井、水平井、各种复杂井段和保护储层的重要手段[1-2]。近年来随着国内页岩气资源勘探开发的持续升温,针对页岩气储层的地质特征和水平井井身结构特点,油基钻井完井液以其独特的优势,成为水平井段钻进的首选钻井完井液体系[3-6]。但从现场实施效果来看,页岩层段的井塌井漏现象仍较为严重[5-7]。井漏、井壁失稳等问题通常会严重损害近井地带储层,后期的压裂改造还可能将侵入的固相和液相推向储层深部,造成大范围的不可恢复损害[8-9]。已有研究认为,对于致密储层,水基工作液的损害以水相圈闭、固相侵入、黏土矿物水化膨胀、应力敏感等方式为主[10-16]。关于油基钻井完井液对页岩储层的保护能力,目前仍缺乏深入系统的分析与评价。笔者以四川盆地志留系龙马溪组和寒武系牛蹄塘组页岩为对象,开展了页岩储层敏感性评价、油基钻井完井液静态和动态损害评价系列实验,力求通过实验分析,探索潜在的损害因素与机理,提出针对性的储层保护措施。

1 岩样及实验方法

11 样品选取

实验岩样为四川盆地龙马溪组和牛蹄塘组页岩,基础物性参数见表l。该2组地层均是古生代海相沉积形成的富有机质页岩,后期经历了大幅度的构造抬升和强烈的地质改造作用[3]。地层硬脆性特征明显,微裂缝发育,常见于石英、长石等骨架颗粒间以及云母片中。裂缝面溶蚀作用明显,常见黏土矿物呈片状、絮状充填以及方解石充填。

 

鉴于评价裂缝岩样的实际意义更大,实验均采用平行于岩样轴向的单条人工裂缝岩样。实验所用油基钻井完井液取自四川某页岩气井,实验室条件下测得其塑性黏度为l36mPa·s,表观黏度为88mPa·spH值为ll.5,与地层水不互溶。

12 页岩储层敏感性评价方法

根据页岩储层典型特征,按照《储层敏感性流动实验评价方法》(SYT 53582010)要求的实验方法,开展速敏、水敏、碱敏和应力敏感实验。

13 钻井完井液对页岩储层的损害评价

131静态损害实验方法

静态损害实验的滤液为TGl6-WS高速离心机将原浆在6000rrain下离心分离固相并过滤后得到。实验通过岩样在滤液损害前(Kf1)与损害后(Kf2)的克氏渗透率变化,评价损害程度,具体实验步骤请参阅本文参考文献[8]

132动态损害实验方法

动态损害实验采用油基钻井完井液原浆,实验仪器为MFC-Ⅰ型多功能损害评价仪,在模拟地层条件(围压为7MPa,工作压差为3.5MPa,温度为70℃、剪切速率为150s-1)对岩样进行损害,测量损害前后地层水渗透率KwKwi,根据返排恢复率(KwiKw)和动态损害率(1-KwiKw)评价损害程度。

2 实验结果

21 储层敏感性评价结果

龙马溪组页岩的流体储层敏感性为中等偏强强,其中碱敏临界pH值仪为7,损害率可达90(2)。储层应力敏感性系数为0.480.62,应力敏感程度为中等。

 

22 钻井完井液对储层的损害评价结果

221静态损害实验

油基钻井完井液滤液对岩样的损害率介于63.5%~99.9(3),损害程度为中等偏强——强。损害前后同一压力点下岩样的气测渗透率普遍降低且超过了60(1)。在缝宽相近时,损害程度与返排压差存在一定的相关性,返排差压低,损害率也相对较低;反之,损害率相对更高。

 

 

222动态损害实验

动态损害后,岩样返排恢复率普遍小于50%,平均损害率为49.0%~87.2%,损害程度中等——强。切除侵入端(1cm)再进行返排测试,损害率总体有所降低(4)。损害程度主要受固相颗粒与缝宽匹配关系及固相侵入严重程度的影响,详见后面“讨论”一节。

 

3 讨论

31 油基钻井完井液损害机理分析

页岩储层的水平段钻井普遍存在井漏等井壁失稳问题(5),并由此引发严重的储层损害问题。分析认为油基钻井完井液对页岩储层的损害方式主要包括固相侵入、油相圈闭损害、碱敏和应力敏感损害。此外,体系巾的聚合物残渣和亲油胶体的吸附滞留现象也能造成一定的储层损害。

 

311固相侵入

马尔文激光粒度仪测得实验所用油基钻井完井液的粒度分布为:D10l.593mmD50l2.573mmD9033.760mm,其中粒径小于l0mm和介于1030mm的固相颗粒含量分别约占40%和50%。该体系对缝宽小于50mm的裂缝具有一定的封堵效果,表现为岩样损害率相对较低,并且切除侵入端后,损害率能进一步下降。对于缝宽大于80mm的岩样,颗粒直径与缝宽的匹配关系差,有效固相颗粒含量不足,无法在裂缝端面形成有效的暂堵层[17],在正压差作用下,外来固相极易侵入裂缝深处,即使切除侵入段,损害率也无明显降低。此外,由于体系中含有大量亲油性质的有机土,以及表面吸附有沥青质或油膜的固相颗粒,相比于水基钻井完井液,侵入固相更难以返排[18]。这也是动态损害率较高的原因之一。

312油相圈闭损害

水相圈闭是制约致密砂岩气井产能的重要因素,毛细管自吸和液相滞留则是产生水相圈闭的主要原因[19]。与致密砂岩储层相比,贞岩储层具有更为发育的微裂缝系统,更高的毛细管力。并且由于页岩富含有机质等性质,岩石也具有明显亲油性质(6)。多种因素的共同作用,使得页岩对油相具有显著的自吸及滞留作用[20-22]。油基钻井完井液滤液的自吸实验表明,干岩样的自吸饱和度为38%~48(2)。油相饱和度大幅度增加,大量滤液吸附滞留在孔道之中而难以返排,势必导致气相渗透率降低,产生油相圈闭损害。

 

 

313碱敏

敏感性实验表明页岩具有强碱敏(2),碱液浸泡实验进一步证实了碱液与岩石矿物间的强烈作用(3)。碱液浸泡前,岩样宏观和微观上的孔隙结构均保存完整,表面整洁;但浸泡后,岩心薄片上的微裂缝明显扩展,见乳白色溶蚀物质充填;SEM图像显示孔隙结构已经受到严重破坏,见大量溶蚀微粒堵塞原有孔隙。实验岩样富含碱敏矿物(1),当高pH值的油基钻井完井液滤液侵入裂缝后,大量的溶蚀微粒以及氢氧根与某些二价阳离子结合生成不溶物,势必堵塞渗流通道,降低裂缝渗透率[12]

 

314应力敏感

页岩储层微裂缝发育,本身已具有一定应力敏感性,流体损害对其还有进一步的强化作用[12-13]。油基钻井完井液滤液损害后,裂缝壁面支撑颗粒强度降低,油相的润滑作用也会减小微凸体间错动变形的摩擦阻力,在有效应力作用下,裂缝更容易被压实,从而加剧应力敏感。

32 储层保护技术对策

321提高裂缝封堵能力

根据上述分析可知,提升油基钻井完井液储层保护能力的关键在于控制同相侵入和液相滤失,因而必须强化其对裂缝的封堵能力。实现高效封堵,首先在于准确预测储层裂缝宽度。钻井过程中,裂缝宽度通常处在动态变化之中,只有在室内岩心观测获取裂缝参数的基础上,考虑油基钻井完井液浸泡和井筒压力波动等因素,才能准确预测其变化范围[23],并以此优选刚性封堵和塑性变形材料体系。其次,注重提高封堵层的舣向承压能力[24]。封堵层的双向承压能力是克服井筒压力波动,保持其稳定、持久封堵能力的关键。威远地区威201-H3井,在充分获取地层裂缝参数的基础上,着重优化了油基钻井完井液的暂堵性等性能,相比于威201-H1井,有效缓解了页岩层段的井壁失稳问题[5]

322控制合理的pH

页岩储层水平段井壁失稳通常发生在钻井完井液浸泡35d后。液相大量滤失侵入储层裂缝系统,高pH值滤液与页岩的相互作用,导致岩石的弱结构面强度降低是失稳的主要原因[25]。胜利油田T2YT3WT3L井钻井过程中井壁失稳现象频发,经分析钻井液高pH值是诱发井壁失稳的主要原因之一。通过降低pH值、控制滤失量等措施对钻井液进行改进,并应用于邻井T3ZVT3ZS的钻井作业,稳定井壁效果良好[26]

323优化井眼轨迹及钻井液密度

威远地区威201-H1井钻遇龙马溪组出现井壁垮塌,为了保证钻进,油基钻井完井液密度逐渐被提至1.85gcm3以上。然而,这不但未能解决垮塌问题,还诱发了严重井漏。探究原因,页岩储层水平段的井壁失稳主要是应力失稳和层理、裂缝失稳共同作用的结果。一旦发生应力失稳,现场通常是通过增加钻井完井液密度来应对。但过高的正压差常导致连通井筒裂缝的缝宽增加,当裂缝宽度超过钻井液的封堵能力时,就会诱发层理、裂缝失稳,甚至是压破地层,造成严重井漏。因此,页岩储层的钻井工程设计需注重井眼轨迹优化,改善井周应力状态,从源头上预防应力失稳。即使发生应力失稳,也应选择合理的钻井液密度进行控制,避免后续措施导致井壁应力状况恶化,造成又塌又漏的局面。

4 结论

1)龙马溪组页岩储层敏感性损害为中等强,油基钻井完井液滤液对裂缝岩样的损害率为63.5%~99.9%,体系动态损害率为49.0%~87.2%,综合损害程度均为中等——强。

2)固相侵入、油相圈闭损害、碱敏损害、流  固耦合强化的应力敏感损害是油基钻井完井液主要的损害方式。

3)优化油基钻井完井液的屏蔽暂堵性能,降低滤失量、控制合理pH值和正压差等,并与井眼轨迹优化设计相结合,既是强化页岩井壁稳定的技术对策,也是提高油基钻井完井液保护页岩气层能力的重要途径。

 

参考文献

[1]SOLIMAN A ADHABI AOil base mud in high Dressurehigh temperature wells[C]//paper 29864-MS Dresented at the SPE Middle East Oil Show11-14 March l995BahrainNew YorkSPE1995

[2]王中华.关于加快发展我国油基钻井液体系的几点看法[J].中外能源,2012l7(2)36-42

WANG ZhonghuaSeveral views on accelerating the development of oil based drilling fluid system in ChinarJ]Sino Global Energy201217(2)36-42

[3]刘洪林,王红岩,刘人和,等.中国页岩气资源及其勘探潜力分析[J].地质学报,201084(9)1374-1378

LIU HonglinWANG HongyanIAU Renheet al.China shale gas resources and prospect potential[J]Acta Geologica Sinica201084(9)1374-1378

[4]邹才能,董大忠,王社教,等.中国页岩气形成机理、地质特征及资源潜力[J].石油勘探与开发,201037(6)641-653

ZOU CainengDONG DazhongWANG Shejiaoet alGeological characteristicsformation mechanism and resource potential of shale gas in China[J]Petroleunl Exploration and Development201037(6)641-653

[5]何涛,李茂森,杨兰平,等.油基钻井液在威远地区页岩气水平井中的应用[J].钻井液与完井液,201229(3)1-5

HE TaoLI MaosenYANG Lanpinget alApplication of oil based drilling fluid in shale gas horizontal well in district of Weiyuan[J]Drilling Fluid&.Completion Fluid201229(3)1-5

[6]王中华.页岩气水平井钻井液技术的难点及选用原则[J].中外能源,201217(4)43-47

WANG ZhonghuaDifficulty and applicable principle of thc drilling fluid technology of horizontal wells for shale gas[J]Sino Global Energy201217(4)43-47

[7]LI YFU YTANG Get alEffcct of weak bedding planes on wellbore stability for shale gas wells[C]//papcr 155666-MS presented at the IADCSPE Asia Pacific Drilling Technology Conference and Exhibition9-ll Julv 2012TianjinChinaNew YorkSPE2012

[8]张绍槐,罗平亚.保护油气层技术[M].北京:石油工业出版社,l99374

ZHANG ShaohuaiLUO PingyaThe technique or the for maton protection[M]BetjingPetroleum lndustrv Press199374

[9]程秋菊,冯文光,康毅力,等.特低渗透油藏入井流体顺序接触储层损害评价[J].西南石油大学学报:自然科学版,201234(2)137-143

CHENC QiujuFENG WenguangKANG Yiliet alExperimental evaluation on formation damage induced by working fluid order contact in low permeability reservoir[J]Journal of Southwest Petroleum UniversityScience&Technology Edition201234(2)137-143

[10]游利军,康毅力,陈一健,等.致密砂岩气藏水相圈闭损害实验研究及应用[J].钻井液与完井液,200623(2)4-7

YOU hijunKANG YiliCHEN Yijianet alExueriments and applications of water phase trapping in tight gas sand reservoirs[J]Drilling Fluid&,Completion FIuid200623(2)4-7

[11]TSAR MBAHRAMI HREZAEE Ret alEffcct of drilling fluid(warer based vs oil based)on phase trapdamage in tight sand gas reservoirs[C]//paper l54652-MS presented at the SPE EUROPECEAGE Annual Conference4-7 June 2012CopenhagenDenmarkNew YorkSPE2012

[12]何金钢,康毅力,游科军,等.流体损害对页岩储层应力敏感性的影响[J].天然气地球科学,201122(5)915-919

HE JingangKANG YiliYOU Lijunet alInfluence of fluid damage on shale reservoir stress sensitivity[J]Natural Gas Geoscience201122(5)915-919

[13]杨建,康毅力,刘静,等.钻井完井液损害对致密砂岩应力敏感性的强化作用[J].天然气工业,200626(8)60-62

YANG JianKANG YiliLIU Jinget alDrill in fluid damage will strengthen the stress sensitivity of tight sands[J]Natural Gas Industry200626(8)60-62

[14]KALANTARI D AMOHAGHEGH SNumerical simulation and multiple realizations for sensitivity study of shale gas reservoirs[C]//paper l41058-MS presented at the SPE Production and Operations Symposium26-29 March 2011Oklahoma City0klahomaUSANew YorkSPE2011

[15]赵峰,唐洪明,王生奎,等.钻井液浸泡时间对返排效果的影响模拟研究[J].西南石油大学学报:自然科学版,201133(5)126-130

ZHAO FengTANG HongmingWANG Shengkuiet alExperimental study on influence of soaking time in drill-in fluids filtrate on return effectiveness of reservoirs[J]Journal of Southwest Petroleum UniversitYScience&Technology Edition201133(5)126-130

[16]BOEK E SHALL CTARDY P MDeep bed filtration modelling of formation damage due to particulate invasion from drilling fluids[J]Transport in Porous Media201291(2)479-508

[17]许成元,康毅力,游利军,等.裂缝性储层渗透率返排恢复率的影响因素[J].石油钻探技术,201240(6)l7-21

XU ChengyuanKANG YiliYOU Lii unet alInfluential factors on permeability recovery during flowback of fractured reservoirs[J]Petroleum Drilling Techniques201240(6)17-21

[18]崔应中,管申,李磊,等.油基钻井液对储层伤害程度的室内评估[J].钻井液与完井液,201229(3)13-15

CUI YingzhongGUAN ShenLI Leiet alEvaluation research on reservoir damage of oil based drilling fluid[J]Drilling Fluid&Completion Fluid201229(3)13-15

[19]CIMOLAI MGIES RBENNION Det alMitigating horizontal well formation damage in a low-permeability conglomerate gas reservoir[C]//paper 26166-MS presented at the SPE Gas Technology Symposium28-30 June 1993CalgaryAlbertaCanadaNew YorkSPEl993

[20]DUTTA RLEE CQuantification of fracturing fluid migration due to spontaneous imbibition in fractured tight formations[C]//paper l54939-MS presented at the SPE American Unconventional Resources Conference5-7 June 2012PittsburghPennsylvaniaUSANew YorkSPE2012

[21]WANG DBUTLER RLIU Het alFlow rate behavior and imbibition in shale[J]SPE Reservoir Evaluation&.Engineering201114(4)485-492

[22]CHALMERS G RBUSTIN RCharacterization of gas shale pore systems by porosimetrypycnometrysurface areaand field emission scanning electron microscopytransmission electron microscopy image analysesExampies from the BarnettWoodfordHaynesvilleMarcellus and Doig units[J]AAPG Bulletin201296(6)1099-1119

[23]李大奇,康毅力,曾义金,等.缝洞型储层缝宽动态变化及其对钻井液漏失的影响[J].中国石油大学学报:自然科学版,201135(5)76 81

L1 DaqiKANG YiliZENG Yijinet alDynamic variation of fracture width and its effects on drilling fluid lost circulation in fractured vuggy reservoirs[J]Journal of China University of PetroleumNatural Science Edition201135(5)76-81

[24]闫丰明,康毅力,孙凯,等.裂缝孔洞型碳酸盐岩储层暂堵性堵漏机理研究[J].石油钻探技术,20ll39(2)81-85

YAN FengmlngKANG YiliSUN Kaiel alMechanism of temporary sealing for fractured vuggy carbonate reservoir[J]Petroleum Drilling Techniques201139(2)81-85

[25]刘向君,刘洪,罗平亚,等.钻井液浸泡对库车组泥岩强度的影响及应用研究[J].岩石力学与一翻呈学报,200928(增刊2)3920-3925

LIU XiangjunLIU HongLUO Pingyaet alResearch on effect of drilling fluid on Kuqa shale strength behavior and its applications[J]Chinese Journal of Rock Mechanics and Engineering200928(S2)3920-3925

[26]YOU LijunKANG YiliLI Xiangchenet alMitigating borehole instability and formation damage with temporary shielding drilling fluids in low permeability fractured reservoirs[C]//paper l65133-MS presented at the SPE European Formation Damage Conference and Exhibition5-7June 2013Noordwijkthe NetherlandsNew YorkSPE2013

 

本文作者:康毅力  杨斌  游利军  陈强  俞杨烽

作者单位:油气藏地质及开发工程国家重点实验室·西南石油大学