城镇燃气设计规范(2020年版) GB50028-2006正文及条文说明在线阅读

摘 要

城镇燃气设计规范(2020年版) GB50028-2006正文及条文说明在线阅读: 现批准《城镇燃气设计规范》GB 50028-2006 局部修订的条文,自2020年6月1日起实施。经此次修改的原条文同时废止。

6 燃气输配系统

6.1 一般规定


 

6.1.1本章适用于压力不大于4.0Mpa(表压)的城镇燃气(不包括液态燃气)室外输配工程的设计。
6.1.2城镇燃气输配系统一般由门站、燃气管网、储气设施、调压设施、管理设施、监控系统等组成。城镇燃气输配系统设计,应符合城镇燃气总体规划,在可行性研究的基础上,做到远、近期结合,以近期为主,并经技术经济比较后确定合理的方案。
6.1.3城镇燃气输配系统压力级制的选择,门站、储配站、调压站、燃气干管的布置,应根据燃气供应来源、用户的用气量及其分布、地形地貌、管材设备供应条件、施工和运行等因素,经过多方案比较,择优选取技术经济合理、安全可靠的文案。
    城镇燃气干管的布置,应根据用户用量及其分布,全面规划,并宜按逐步形成环状管网供气进行设计。

6.1.3A 城镇燃气应具有稳定可靠的气源和满足调峰供应、应急供应等的气源能力储备。当采用天然气气源时,气源能力储备还应符合国家现行相关政策的规定。
6.1.3B 城镇燃气气源能力储备设施建设应因地制宜、合理布局、统筹规划,宜采用集中设置区域性储备设施的方式,天然气还宜符合下列规定:

    1 具备地质条件时,宜采用地下储气库方式;
    2 具备岸线和港口条件时,宜采用液化天然气接收站等方式;
    3 在不具备建设地下储气库和液化天然气接收站条件的内陆地区,宜采用集约化布局的液化天然气储备基地方式。
6.1.4 城镇燃气采用天然气作气源时,逐月用气不均匀性平衡和应急供气应由气源方统筹调度解决;逐日用气不均匀性平衡应按国家现行相关政策要求由气源方与需气方根据用户、气源调节和储气方式等情况共同协商解决;逐小时用气不均匀性平衡,应由需气方设置调峰储气设施统筹调度解决。
    需气方对城镇燃气用户应进行用气量预测,在各类用户全年综合用气负荷资料的基础上,制定逐月、逐日用气量计划,并与气源方协商签订供气合同,供气合同应明确供需双方的气量计划。
6.1.5 用于调峰供应的气源能力储备的规模,应根据计算月平均日用气总量、用户结构、供气和用气不均匀情况、运行稳定性和供气调度规律等因素,在充分利用气源可调量的基础上综合确定。

    储备方式的选择应经方案比较,择优选取技术经济合理、安全可靠的方案对来气压力较高的天然气输配系统宜采用管道储气的方式。
6.1.5A 气源能力储备设施与城镇燃气管网之间应设有能力和可靠性满足要求的输送系统。当气源能力储备设施设置在异地时,应采取措施保证储备气源能够可靠、按需输送至城镇燃气管
    网,并应实现连续、稳定供气。
6.1.5B 当采用人工制气气源时,人工制气厂站的设计产量宜按设计规模的计算月最大日用气量确定,设计产量中的基本气量和调峰气量应符合现行国家标准《人工制气厂站设计规范》GB51208 的有关规定。
6.1.5C 当城镇燃气设置可替代气源作为气源能力储备时,其供气能力及原料储备应与承担的供气和储备规模相适应。可替代气源与主气源的气质应具备满足要求的互换性。
6.1.5D 城镇燃气气源能力储备采用地下储气库方式时,地下储气库及其地面设施的设计应符合国家现行标准《地下储气库设计规范》SY/T 6848、《输气管道工程设计规范》GB 50251 及国家现行其他相关标准的规定。

6.1.6城镇燃气管的设计压力(P)分为7级,并应符合表6.1.6的要求。

6.1.6城镇燃气管设计压力(表压)分级

6.1.7燃气输配系统各种压力级别的燃气管道之间应通过调压装置相连。当有可能超过最大允许工作压力时,应设置防止管道超压的安全保护设备。


条文说明

6.1一般规定
6.1.1城镇燃气管道压力范围是根据长输高压天然气的到来和参考国外城市燃气经验制定的。
    据西气东输长输管道压力工况,压缩机出口压力为10.0MPa,压缩机进口压力为8.0MPa,这样从输气干线引支线到城市门站,在门站前能达到6.0MPa左右,为城镇提供了压力高的气源。提高输配管道压力,对节约管材,减少能量损失有好处;但从分配和使用的角度看,降低管道压力有利于安全。为了适应天然气用气量显著增长和节约投资、减少能量损失的需要,提高城市输配干管压力是必然趋势;但面对人口密集的城市过多提高压力也不适宜,适当地提高压力以适应输配燃气的要求,又能从安全上得到保障,使二者能很好地结合起来应是要点。参考和借鉴发达国家和地区的经验是一途径。一些发达国家和地区的城市有关长输管道和城市燃气输配管道压力情况如表23。

表23 燃气输配管道压力(MPa)

    从上述九个特大城市看,门站后高压输气管道一般成环状或支状分布在市区外围,其压力为2.0~4.48MPa不等,一般不需敷设压力大于4.0MPa的管道,由此可见,门站后城市高压输气管道的压力为4.0MPa已能满足特大城市的供气要求,故本规范把门站后燃气管道压力适用范围定为不大于4.0MPa。
    但不是说城镇中不允许敷设压力大于4.0MPa的管道。对于大城市如经论证在工艺上确实需要且在技术、设备和管理上有保证,在门站后也可敷设压力大于4.0MPa的管道,另外门站前肯定会需要和敷设压力大于4.0MPa的管道。城镇敷设压力大于4.0MPa的管道设计宜按《输气管道工程设计规范》GB 50251并参照本规范高压A(4.0MPa)管道的有关规定执行。
6.1.3 “城镇燃气干管的布置,宜按逐步形成环状管网供气进行设计”,这是为保证可靠供应的要求,否则在管道检修和新用户接管安装时,影响用户用气的面就太大了。城镇燃气都是逐步发展的,故在条文中只提“逐步形成”,而不是要求每一期工程都必须完成环状管网;但是要求每一期工程设计都宜在一项最后“形成干线环状管网”的总体规划指导下进行,以便最后形成干环状管网。

6.1.3A 本条规定了城镇燃气应具有稳定可靠气源的基本要求,强调了气源的重要性,要求城镇燃气气源应具有一定程度的能力储备,除满足调峰工况供气需要外,还应对应急工况具有一定的保障能力。本条要求适用于各种类型的城镇燃气气源。气源能力储备的方式一般包括设置气源富裕和备用生产能力及设施、设置储气设施、设置可替代气源等。
    调峰储备是为平衡供气和用 气 的 不 均匀性 (一般是用气不均匀性)进行的储气。用气不均匀性可划分为季节性的月不均匀性、日不均匀性和小时不均匀性,相应的调峰分为季节调峰、日调峰和时调峰。平衡日、时不均匀性所需的储气容量需要按时间过程的周期,对供气量、需气量用代数方法进行累积计算得出。
    应急储备是为应对突发事件的储气。按突发事件的发生方向可划分为因供气事故(气源事故、长输管道事故或城镇管网事故)引发的应急储气需求,或由于气温骤降等外部因素引起的需气量骤变产生的应急储气需求。通常情况下,城镇燃气应急供应气源能力储备的规模可按现行国家标准《城镇燃气规划规范》GB/T 51098一2015规定的“3d一lod城镇不可中断用户的年均日用气量”考虑。
    对于天然气气 源 , 除 了具有用于保证调峰供应、应急供应的气源能力储备以外,还应具有一定规模用于保障国家天然气能源安全需要的气源能力储备。这是政府以行政手段作出的规定,可以理解为天然气产业链上、下游协同建立的天然气能源安全储备。依靠大规模储气设施应对国际政治、经济、军事形势的变化,储气方式主要为地下储气库,辅以液化天然气接收站等。
    我 国 天 然 气储备的具体政策要求详见国务院2018年8月03日发布的国发[2018]31号文件《国务院关于促进天然气协调稳定发展的若干意见》,文件要求:“供气企业到2020年形成不低于其年合同销售量10%的储气能力。城镇燃气企业到2020年形成不低于其年用气量5%的储气能力,各地区到2020年形成不低于保障本行政区域3天日均消费量的储气能力”。上述指标实现后我国天然气储气能力总体水平将达到全年消费总量的约16%,达到世界平均水平,接近国外发达国家水平。根据资料显示,截至2015年,世界各国天然气储备量占年消费量的平均水平为12%-15%。美国已建成天然气储气库 419座,储气量占年消费量的17.4%;加拿大已建成储气库5座,储气量占年消费量的20.1%;俄罗斯已建成储气库26座,储气量占年消费量的18%;德国已建成储气库46 座,储气量占年消费量的30.7%;其他欧洲发达国家天然气储备能力一般也达到年消费气量的15%以上。
    国发 [2018]13 号 文件要求天然气储备规模达到的时间为2020年,具有明确的时效性,但随着经济发展和时间推移,为了赶上甚至超过发达国家水平,该指标还有进行调整的可能。此外,随着国家推动石油天然气管网运营机制改革,国家天然气管网公司组建在即;集约化设置的战略储备由于远离供气所在地,必须依托于天然气管网才能实现输送,管理权必将由上游集中控制。因此,当我国天然气储气规模达到最终指标并稳定后,分配给下游城镇燃气企业年用气量5%储气能力的指标,并不是必须和固定不变的;在天然气能源安全储备整体水平达标的前提下,最终的关键还是在于理顺上游向下游供气不同工况下的价格。欧美发达国家天然气产业储气调峰服务市场化程度较高,美国从20世纪30年代开始建设储气设施,1992年以前,储气库主要由输气管道公司和城市燃气公司建设运营,储气库的投资与运营成本计人管输费,是销售价格的组成部分,储气库不对第三方开放。1992年,美国联邦能源监管委员会636号令颁布,要求州际管道公司剥离销售业务,管道、储气设施向第三方开放,保证终端配气企业能够得到公平的运输和储气服务,储气设施逐渐独立,成为第三方服务供应商。
    基于上述情况,本条对于 城 镇 燃 气企业承担保障国家天然气能源安全需要的气源能力储备,未直接给出具体数值要求,而是采用“还应符合国家现行相关政策的规定”的表述方式,以适应政策要求调整的连续性和合理性,也保证技术标准的严谨性和科学性。
    国 发[2018]13号文件 “城镇燃气企业到2020年形成不低于其年用气量5%的储气能力”的天然气储备指标中应包含城镇燃气企业所供应市场的小时调峰储气量、地方政府负责协调落实给城镇燃气企业所承担部分的日调峰储气量,其余可归为城镇燃气企业所分担的应急储备量及天然气能源安全储备量。需要指出的是,城镇燃气企业分担的天然气应急储备及天然气能源安全储备,是城镇燃气企业在当前情况下为保证国家天然气能源安全做出的超出自身供气需要的特殊贡献,也带来了企业资金和运行费用的上涨,应给予一定的政策鼓励,并通过市场化运营摊销相关成本,缓解经济压力。随着时间的推移,在国家天然气储备机制和设施建设达到要求后,城镇燃气企业所承担的储备任务将会恢复到自身供气需要的范围内。
    国家发展和改革委员会第15号 令 《天然气利用政策》将天然气用户划分为:“城市燃气、工业燃料、天然气发电、天然气化工和其他用户”,在这几类用户中,除城市燃气用户外,其余的工业燃料、天然气发电、天然气化工和其他用户等(即大用户)被要求承担的储气调峰责任仅为国发[2018]31号文件规定的“地方政府负责协调落实日调峰责任主体,供气企业、管道企业、城镇燃气企业和大用户在天然气购销合同中协商约定日调峰供气责任”,并未被要求承担年用气量5%储气能力指标。
    目前,向工业用户、天然气发电用户供应天然气的模式 有 三种。第一种是由上游管道企业与用户签订供气合同,由管道企业或用户建设连接管道实现供气;第二种是由上游管道企业与用户签订供气合同、与城镇燃气企业签订代输合同,通过城镇燃气管道代输实现供气;第三种是由上游管道企业与城镇燃气企业签订供气合同、城镇燃气企业与用户签订供气合同,通过城镇燃气管道实现供气。但不管是哪种模式,工业用户、天然气发电用户的性质和所应承担的储气调峰责任和义务应该是相同的。目前,前两种模式(直供和代输)未被要求额外承担年用气量5%储气能力指标,因此,第三种模式中与之同类型大工业用户、天然气发电用户的用气量不计人城镇燃气企业所承担年用气量5%储气能力指标的计算基数内是合理的。
6.1.3B 本条依据国务院2018年8月30 日发布的国发[2018]31号文件《国务院关于促进天然气协调稳定发展的若干意见》和国家发改委、国家能源局2018年4月26 日发改能源规[2018]637号文件《关于加快储气设施建设和完善储气调峰辅助服务市场机制的意见》制定。
    国发 [2018]13号文件 “ (五 ) 构 建多层次储备体系”要求“建立以地下储气库和沿海液化天然气(LNG)接收站为主、重点地区内陆集约规模化LNG储罐为辅、管网互联互通为支撑的多层次储气系统”。“(六)强化天然气基础设施建设与互联互通”要求“根据市场发展需求,积极发展沿海、内河小型LNG船舶运输,出台LNG罐箱多式联运相关法规政策和标准规范”。发改能源规 [2018]637号文件 “五、重点任务 (三) 构 建储气调峰辅助服务市场”指出:
    “1 自建、合建、租赁、购买等多种方式相结合履行储气责任。鼓励供气企业、输气企业、城镇燃气企业、大用户及独立第三方等各类主体和资本参与储气设施建设运营。支持企业通过自建合建储气设施、租赁购买储气设施或者购买储气服务等方式,履行储气责任。支持企业异地建设或参股地下储气库、LNG接收站及调峰储罐项目。
    2 坚持储气服务 和调 峰 气 量市场化定价。储气设施实行财务独立核算,鼓励成立专业化、独立的储气服务公司。储气设施天然气购进价格和对外销售价格由市场竞争形成。储气设施经营企业可统筹考虑天然气购进成本和储气服务成本,根据市场供求情况自主确定对外销售价格。鼓励储气服务、储气设施购销气量进人上海、重庆等天然气交易中心挂牌交易。峰谷差大的地方,要在终端销售环节积极推行季节性差价政策,利用价格杠杆“削峰填谷”。
    3 坚 持 储 气 调峰成本合理疏导。城镇区域内燃气企业自建自用的储气设施,投资和运行成本纳入城镇燃气配气成本统筹考虑,并给予合理收益。城镇燃气企业向第三方租赁购买的储气服务和气量,在同业对标、价格公允的前提下,其成本支出可合理疏导。鼓励储气设施运营企业通过提供储气服务获得合理收益,或利用天然气季节价差获取销售收益。管道企业运营的地下储气库等储气设施,实行第三方公平开放,通过储气服务市场化定价,获得合理的投资收益。支持大工业用户等通过购买可中断气量等方式参与调峰,鼓励供气企业根据其调峰作用给予价格优惠”。
    构 建 储 气 调峰辅助服务市场是石油天然气发展改革的重点内容之一,发改能源规[2018」637 号文件“五、重点任务(三)构建储气调峰辅助服务市场”明确提出“自建、合建、租赁、购买等多种方式相结合履行储气责任”。对于以租赁储气库库容或LNG储罐罐容方式解决储备问题的,无论是长期租赁、短期租赁还是临时租赁,不应进行限制,充分发挥市场化作用,以符合相关政策的储备指标要求为原则。
    城镇燃气是市政公用设施,具 有 明 显 的属地性。基于燃气易燃易爆的特性,对储气设施与周边建(构)筑物的防火间距要求较高,如果采用小规模多点分散设置方式,存在规划选址困难的问题,也相对增大了安全管理风险。储气设施“遍地开花”更不符合国家政策的要求。
    天然气储备常用的 方 式 为 地下储气库和LNG储罐,高压气体储罐已较少采用。地下储气库的设置必须具备适宜的地质构造,目前主要有利用枯竭油气田、利用地下盐穴、利用含水多孔地层等3种类型,受地质条件限制不可能在每个城市和地区都兴建地下储气库;LNG接收码头的设置则必须具备岸线和港口条件;液化天然气储备基地可以在不具备地下储气库和液化天然气接收站的内陆地区设置,但要具备LNG来源和运输条件,且不
宜“遍地开花”。
    本条给出了城镇燃气气源能力储备可采用的几种模式。对于天然气气源,根据国家相关政策要求和天然气储备设施的实际特点,从地质、岸线条件和区域性布局角度出发,对气源能力储备设置的形式提出了推荐性的要求。对于同时具备建设地下储气库和液化天然气接收站条件的地区,应在总体把握储气规模的前提下,遵循以地下储气库为主,液化天然气接收站合理、适度的原则。
    政 策 文 件 提到的LNG罐箱,具有运输和周转灵活的特点,但LNG罐箱的应用尚缺少特种设备安全管理、多式联运和集中储存、终端供气应用等法规和技术标准体系的支撑,因此尚不适宜作为本规范建议采用的气源储备方式列人条文。
6.1.4 本条依据中共中央、国务院印发《关于深化石油天然气体制改革的若干意见》(简称《意见) 和国家发改委、国家能源局2018年4月26日发改能源规〔2018〕637号文件(关于加快储气设施建设和完善储气调峰辅助服务市场机制的意见》制定。
    《意见》“七是完善油气储备体系”规定 “明确政府、供气企业、管道企业、城市燃气公司和大用户的储备调峰责任与义务,供气企业和管道企业承担季节调峰责任和应急责任,地方政府负责协调落实日调峰责任主体,鼓励供气企业、管道企业、城市燃气公司和大用户在天然气购销合同中协商约定日调峰供气责任”。发改能源规[2018]637 号文件 “三、基本原则”规定:“明确责任划分。供气企业和管道企业承担季节(月)调峰责任和应急责任。其中,管道企业在履行管输服务合同之外,重在承担应急责任。城镇燃气企业承担所供应市场的小时调峰供气责任。地方政府负责协调落实日调峰责任主体,供气企业、管道企业、城镇燃气企业和大用户在天然气购销合同中协商约定日调峰供气责任”。
    逐月、 逐 日的 用 气不均匀性,主要表现在采暖和节假日等日用气量的大幅度增长,其日用量可为平常的2-3倍,甚至达到10几倍,平衡这样大的变化,除了改变天然气田采气量外,国外一般采用天然气地下储气库和液化天然气储库方式。
    根据天然气运行工况特点和国家相关政策要求, 本 条 明 确了城镇燃气的季节(月)调峰和应急供气由气源方承担,小时调峰由需气方承担,日调峰由地方政府负责协调,由气源方、需气方分别承担协商约定所分配的份额。本条文中“气源方”是指向城镇燃气企业供应天然气的上游和中游企业,即与城镇燃气企业签订购销合同的气源企业和签订管输合同的管道运营企业。“需气方”指接收气源方供应天然气并向用户供气的城镇燃气企业。
    国发 [20 18 」 13 号文件 “各地区到2020年形成不低于保障本行政区域3天日均消费量的储气能力”的要求具有明显的行政性,责任主体是地方人民政府,由于本规范是工程建设技术标准,无法对地方人民政府的行政责任做出规定,因此,对于日调峰责任主体,仅以“城镇燃气逐日用气不均匀性平衡,应按国家现行相关政策要求由气源方与需气方根据用户、气源调节和储气方式等情况共同协商解决”的方式表述。
    签订供气合同是为了明确上、下游双 方 在 天 然气供销环节的责、权、利,而且这个合同在实施中可根据近期变化进行调整。为了做好对逐月、逐日的用气量不均匀性的平衡,城镇燃气企业(需气方),应经调查研究和资料积累,在完成各类用户全年综合用气负荷资料(含计划中缓冲用户安排)的基础上,制定逐月、逐日用气量计划,为供气合同中气量计划的确定和上游企业(气源方)安排调峰供气工作提供依据。
    根据经验,以天然气市场有序发 展 为 前 提,在供销双方明确约定年度供气量、分月度供气量和最大日供气量参数的情况下,利用天然气气井生产调节能力和地下储气库、液化天然气储库调节能力,能够解决需气方季节(月)、日用气不均衡问题,如果地下储气库距离需气方较近或者需气方位于输气管线末端,还可以用来平衡逐小时用气量的变化,这些做法经国外的实践表明是可行的。
6.1.5 本条适用于各种类型的城镇燃气气源。城镇各类用户的用气量是不均匀的,随月、日、小时而变化,平衡这种变化,需要有调峰措施(调度供气措施)。对于人工制气、液化石油气,以往城镇燃气公司一般统管气源、输配和应用,平衡用气的不均匀性由当地燃气公司统筹调度解决。在天然气来到之后,城镇燃气属于整个天然气系统的下游(需气方),长输管道为中游,天然气开采净化为上游(中游和上游可合称为气源方)。上、中、下游有着密切的联系,应作为一个系统工程对待,调峰问题作为整个系统中的问题,需从全局来解决,以求得天然气系统的优化,达到经济合理的目的。
    气源能力储备的方式不 同 , 所 适用的调峰类型也不同。气田生产调节和多气源调度是利用气源供应的可调节性,气田生产调节需要的时间较长,适合用于季节调峰;发展可中断用户是利用终端用气的可调节性,可中断用户并不是随时中断,也必须保证一定的连续性、稳定性,适合用于季节调峰;储气设施有大有小、灵活机动,适用于季节调峰、日调峰、小时调峰;可替代气源开启需要一定的时间,适用于季节调峰、可用于日调峰;城镇燃气高压管道储气类似于高压储罐,管道长度和容量有限且肩负输送配气任务,适用于小时调峰。基于用气城市分布、输送和运 输 能 力 及可靠性、地质和港口条件等因素影响的现实情况,本条强调调峰用气源能力储备方式的选择应因地制宜,经方案比较确定。高压罐的储气方式在很多发达国家(包括以前采用高压罐较多的苏联)已不再用于天然气工程,应引起我们的重视。
6.1.5A 本条依据中共中央、国务院印发《关于深化石油天然气体制改革的若干意见》(简称《意见)、国发[2018]31号文件《国务院关于促进天然气协调稳定发展的若干意见》和国家发改委、国家能源局发改能源规[2018」637号文件《关于加快储气设施建设和完善储气调峰辅助服务市场机制的意见》制定。
    《意见》“三是改革油气管网运营机制,提升集约输送和公平服务能力。分步推进国有大型油气企业干线管道独立,实现管输和销售分开。完善油气管网公平接人机制,油气干线管道、省内和省际管网均向第三方市场主体公平开放”。
    国发 [2018]13号文件 “(五)构建多层 次 储 备 体系”要求“建立以地下储气库和沿海液化天然气(LNG)接收站为主、重点地区内陆集约规模化LNG储罐为辅、管网互联互通为支撑的多层次储气系统”。
    发改能源规 [2018] 637号文件 “五、重点任务 (一)加强规划统筹,构建多层次储气系统”要求“4.全面加强基础设施建设和互联互通。基础设施建设和管网互联互通两手抓,加快完善和优化全国干线管网布局,消除管输能力不足和区域调运瓶颈的制约。加快管网改造升级,协调系统间压力等级,实现管道双向输送,最大限度发挥应急和调峰能力。县级以上人民政府指定的部门要加强规划统筹和组织协调,会同相关部门保障互联互通工程实施以及储气设施就近接人输配管网,并推动省级管网与国家干线管道互联互通”。
    加强输气管线互联 互通 是 充 分发挥各种调峰、应急能力必要的辅助手段,是配置各项资源的基础。2017年冬季“气荒”期间,在国家发改委、国家能源局及广东省发改委的协调下,中石油、中海油联合保供,利用广东省网将中海油南海气田和沿海LNG接收站的进口天然气“北上”置换供应中石油西气东输二线的部分用户市场,开创了“南气北送”联合保供的新模式;2018年,根据国家发改委的要求,国内输气管网完成了中贵联络线增输、陕京四线增压、广西LNG接收站与中缅管道连通、广东区域内LNG接收站与西二线连通等10项重点工程,进一步提高了天然气资源调配能力,也加强了天然气资源的调峰和应急保障能力。
    本条强调 了 城 镇 燃气气源能力储备为异地设置时应具备按需输送至城镇燃气输配系统的能力,输送的方式可以是管道运输,也可以是槽车运输,还包括采用储备气源异地置换供应的商业化调配方式,以能够满足稳定供气为准则;对于本地设置的气源能力储备更是必须如此保证。由于储气设施的规划布局以集约化为原则,采用管道输送方式时必须以管网互联互通为基础,因此制定本条的意图也是强调“互联互通”。
6.1.5B 人工制气的气源能力储备应符合本规范“满足调峰供应、应急供应等”的规定。国发[2018]31号文件《国务院关于促进天然气协调稳定发展的若干意见》针对的仅为天然气气源,对于人工制气气源未要求设置类似天然气气源用于保障国家能源安全的储备设施。人工制气厂站的气源能力储备通常采用设置备用制气设备预留一定余量制气能力的方式,不足的部分可采用设置可替代气源、设置储气设施、设置缓冲用户等方式。本条规定与现行国家标准《人工制气厂站设计规范》GB 5 1208-2016是一致的。
6.1.5C 城镇燃气气源种类较多,包括天然气、液化石油气、人工制气、矿井气等。我国在管输天然气大量推广使用之前,很多城市是采用液化石油气混空气作为天然气的过渡气源,被称为“代天然气”,并已积累了丰富的运行经验。经过数十年的市场化发展,液化石油气具有来源丰富、购销灵活、储运便捷的特点,当作为主力气源的天然气短缺时,采取液化石油气混空气作为天然气的替代气源,对于提高城镇燃气气源安全保障能力具有重要意义。此外,液化石油气混空气、矿井气、煤制气等相互之间都具有作为可替代气源的可能。
    根据国际通用做法和经验 , 天 然 气的气源能力储备是以地下储气库为主、LNG储存为辅,因此本条对可替代气源作为天然气气源能力储备的定位是“补充”。
6.1.5D 本条明确了城镇燃气气源能力储备采用地下储气库方
式时,地下和地面设施设计应执行的相关标准规范。

6.1.6本条规定了城镇燃气管道按设计压力的分级
    1 根据现行的国家标准《管道和管路附件的公称压力和试验压力》GB1048,将高压管道分为2.5<P≤4.0MPa和1.6<P≤2.5MPa两档,以便于设计选用。
    2 把低压管道的压力由小于或等于0.005MPa提高到小于0.01MPa。这是考虑为今后提高低压管道供气系统的经济性和为高层建筑低压管道供气解决高程差的附加压头问题提供方便。
    低压管道压力提高到小于0.01MPa在发达国家和地区是成熟技术,发达国家和地区低压燃气管道采用小于0.01MPa的有:比利时、加拿大、丹麦、西德、匈牙利、瑞典、日本等;采用0.0070~0.0075MPa有英国、澳大利亚、中国香港等。由于管道压力比原先低压管道压力提高不多,故仍可在室内采用钢管丝扣连接;此系统需要在用户燃气表前设置低-低压调压器,用户燃具前压力被稳定在较佳压力下,也有利于提高热效率和减少污染。
    3 城镇燃气输配系统压力级制选择应在本条所规定的范围内进行,这里应说明的是:
        1) 不是必须全部用上述压力级制,例如:
        一种压力的单级低压系统;
        二种压力的:中压B-低压两级系统;中压A-低压两级系统;
        三种压力的:次高压B-中压A-低压系统;次高压A-中压A-低压系统;
        四种或四种以上压力的多级系统等都是可以采用的。各种不同的系统有其各自的适用对象,我们不能笼统地说哪种系统好或坏,而只能说针对某一具体城镇,选用哪种系统更好一些。
        2) 也不是说在设计中所确定的压力上限值必须等于本条所规定的上限值。一般在某一个压力级范围内还应做进一步的分析与比较。例如中压B的取值可以在0.010~0.2MPa中选择,这应根据当地情况做技术经济比较后才能确定。

6.2燃气管道计算流量和水力计算


 

6.2.1城镇燃气管道的计算流量,应按计算月的小时最大用气量计算。该小时最大用气量应根据所有用户燃气用气量的变化叠加后确定。
    独立居民小区和庭院燃气支管的计算流量宜按本规范第10.2.9 条规定执行。
6.2.2居民生活和商业用户燃气小时计算流量(0℃和101.325KPa),宜按下式计算:

 式中:Qh——燃气小时计算流量(m3/h);
          Qa——年燃气用量(m3/a);
          n——年燃气最大负荷利用小时数(h)
          Km——月高峰系数,计算月的日平均用气量和年的日平均用气量之比;
          Kd——日高峰系数,计算月中的日最大用气量和该月日平均用气量之比;
          Kh——小时高峰系数,计算月中最大用气量日的小时最大用气量和该日小时平均用气量之比。
6.2.3居民生活和商业用户用气的高峰系数,应根据该城镇各类用户燃气用量(或燃料用量)的变化情况,编制成月、日、小时用气负荷资料,经分析研究确定。
    工业企业和燃气汽车用户燃气小时计算流量,宜按每个独立用户生产的特点和燃气用量(或燃料用量)的变化情况,编制成月、日、小时用气负荷资料确定。
6.2.4采暖通风和空调所需燃气小时计算流量,可按国家现行的标准《城市热力网设计规范》CJJ34有关热负荷规定并考虑燃气采暖通风和空调的热效率折算确定。
6.2.5低压燃气管道单位长度的摩擦阻力损失应按下式计算:

式中: △P——燃气管道摩擦阻力损失(Pa);
          λ——燃气管道摩擦阻力系数,宜按式(6.2.6-2)和附录C 第C.0.1 条第1、2 款计算;
          l——燃气管道的计算长度(m);
          Q——燃气管道的计算流量(m3/h);
          d——管道内径(mm);
          ρ——燃气的密度(kg/m3);
          T——设计中所采用的燃气温度(K);
          T0——273.15(K)。
6.2.6高压、次高压和中压燃气管道的单位长度摩擦阻力损失,应按式(6.2.6-1)计算:

 

  式中:P1——燃气管道起点的压力(绝对压力,kPa);
          P2——燃气管道终点的压力(绝对压力,kPa);
          Z——压缩因子,当燃气压力小于1.2MPa(表压)时,Z取1;
          L——燃气管道的计算长度(km);
          λ——燃气管道摩擦阻力系数,宜按式(6.2.6-2)计算;
          K——管壁内表面的当量绝对粗糙度(mm);
          Re——雷诺数(无量纲)。
    注:当燃气管道的摩擦阻力系数采用手算时,宜采用附录C公式。
6.2.7室外燃气管道的局部阻力损失可按燃气管道摩擦阻力损失的5%~10%进行计算。
6.2.8城镇燃气低压管道从调压站到最远燃具管道允许阻力损失,可按下式计算:

  式中:△Pd——从调压站到最远燃具的管道允许阻力损失(Pa);
          Pn——低压燃具的额定压力(Pa)。
    注:△Pd含室内燃气管道允许阻力损失,室内燃气管道允许阻力损失应按本规范第10.2.11 条确定。


条文说明

6.2燃气管道计算流量和水力计算
6.2.1为了满足用户小时最大用气量的需要,城镇燃气管道的计算流量,应按计算月的小时最大用气量计算。即对居民生活和商业用户宜按第6.2.2条计算,对工业用户和燃气汽车用户宜按第6.2.3条计算。
    对庭院燃气支管和独立的居民点,由于所接用具的种类和数量一般为已知,此时燃气管道的计算流量宜按本规范第10.2.9条规定计算,这样更加符合实际情况。
6.2.4燃气作为建筑物采暖通风和空调的能源时,其热负荷与采用热水(或蒸汽)供热的热负荷是基本一致的,故可采用《城市热力网设计规范》CJJ34中有关热负荷的规定,但生活热水的热负荷不计在内,因为生活热水的热负荷在燃气供应中已计入用户的用气量指标中。
6.2.5、6.2.6本条以柯列勃洛克公式替代原来的阿里特苏里公式。柯氏公式是至今为世界各国在众多专业领域中广泛采用的一个经典公式,它是普朗特半经验理论发展到工程应用阶段的产物,有较扎实的理论和实验基础,在规范的正文中作这样的改变,符合中国加入WTO以后技术上和国际接轨的需要,符合今后广泛开展国际合作的需要。
    柯列勃洛克公式是个隐函数公式,其计算上产生的困难,在计算机技术得到广泛应用的今天已经不难解决,但考虑到使用部门的实际情况,给出一些形式简单便于计算的显函数公式仍是需要的,在附录C中列出了原规范中的阿里特苏里公式,阿氏公式和柯式公式比较偏差值在5%以内,可认为其计算结果是基本一致的。
    公式中的当量粗糙度K,反映管道材质、制管工艺、施工焊接、输送气体的质量、管材存放年限和条件等诸多因素使摩阻系数值增大的影响,因此采用旧钢管的K值。
    对于我国使用的焊接钢管,其新钢管当量粗糙度多数国家认定为K=0.045mm左右,1990年的燃气设计规范专题报告中,引用了二组新钢管实测数据,计算结果与K=0.045mm十分接近。在实际工程设计中参照其他国家规范对天然气管道采用当量粗糙度的情况,取K=0.1mm较合适。取K=0.1mm比新钢管取K=0.045mm,其λ值平均增大10.24%。
    考虑到人工煤气气质条件,比天然气容易造成污塞和腐蚀,根据1990年的燃气设计规范专题报告中的二组旧钢管实测数据,反推当量粗糙度K为0.14~0.18mm。
    本规范对人工煤气使用钢管时取K=0.15mm,它比新钢管K=0.045mm,λ值平均增大18.58%。6.2.8本条所述的低压燃气管道是指和用户燃具直接相接的低压燃气管道(其中间不经调压器)。我国目前大多采用区域调压站,出口燃气压力保持不变,由低压分配管网供应到户就是这种情况。
    1 国内几个有代表性城市低压燃气管道计算压力降的情况见表24。燃具额定压力Pn为800Pa时,燃具前的最低压力为600Pa,约为Pn的600/800=75%。低压管道总压力降取值:北京较低、沈阳较高、上海居中。这有种种原因,如北京为1958年开始建设的,对今后的发展留有较大余地;又如沈阳是沿用旧的管网,由于用户在不断的增加,要求不断提高输气能力,不得不把调压站出口压力向上提,这是迫不得已采取的一种措施;上海市的情况界于上述两城市之间,其压力降为900Pa,约为Pn的1.0倍。

表24 几个城市低压管道压力降(Pa)

2 原苏联建筑法规《燃气供应、室内外燃气设备设计规范》对低压燃气管道的计算压力降规定如表25,其总压力降约为燃具额定压力的90%。

表25低压燃气管道的计算压力降(Pa)

    3 从我国有关部门对居民用的人工煤气、天然气、液化石油气燃具所做的测定表明,当燃具前压力波动为0.5Pn~1.5Pn时,燃烧器的性能达到燃具质量标准的要求,燃具的这种性能,在我国的《家用燃气灶具标准》GB16410中已有明确规定。
    但不少代表提出,在实际使用中不宜把燃具长期置于0.5Pn下工作,因为这样不合乎中国人炒菜的要求,且使做饭时间加长,参照表24的情况,可见取0.75Pn是可行的。这样一个压力相当于燃气灶热负荷比额定热负荷仅仅降低了13.4%,是能基本满足用户使用要求的,而且这只是对距调压站最远用户而言,在一年中也仅仅是在计算月的高峰时出现,对广大用户不会产生影响。
    综上所述燃气灶具前的实际压力允许波动范围取为0.75Pn~1.5Pn是比较合适的。
    4 因低压燃气管道的计算压力降必须根据民用燃气灶具压力允许的波动范围来确定,则有1.5Pn-0.75Pn=0.75Pn
    按最不利情况即当用气量最小时,靠近调压站的最近用户处有可能达到压力的最大值,但由调压站到此用户之间最小仍有约150Pa的阻力(包括煤气表阻力和干、支管阻力),故低压燃气管道(包括室内和室外)总的计算压力降最少还可加大的150Pa,故△Pd=0.75Pn+150
    5 根据本条规定,低压管道压力情况如表26。

表26低压燃气管道压力数值表(Pa)

    6 应当补充说明的是,本条所给出的只是低压燃气管道的总压力降,至于其在街区干管、庭院管和室内管中的分配,还应根据情况进行技术经济分析比较后确定。作为参考,现将原苏联建筑法规推荐的数值列如表27。

表27《原苏联建筑法规》规定的低压燃气管道压力降分配表(Pa)

对我国的一般情况参照原苏联建筑法规,列出的数值如表28可供参考。

表28低压燃气管道压力降分配参考表(Pa)

6.3 压力不大于1.6Mpa的室外燃气管道


 

6.3.1中压和低压燃气管道宜采用聚乙烯管、机械接口球墨铸铁管、钢管或钢骨架聚乙烯塑料复合管,并应符合下列要求:
    1 聚乙烯燃气管应符合现行的国家标准《燃气用埋地聚乙烯管材》GB15558.1 和《燃气用埋地聚乙烯管件》GB15558.2的规定;
    2 机械接口球墨铸铁管道应符合现行的国家标准《水及燃气管道用球墨铸铁管、管件和附件》GB/T13295的规定;
    3 钢管采用焊接钢管、镀锌钢管或无缝钢管时,应分别符合现行的国家标准《低压流体输送用焊接钢管》GB/T3091、《输送流体用无缝钢管》GB/T 8163的规定;
    4 钢骨架聚乙烯塑料复合管应符合国家现行标准《燃气用钢骨架聚乙烯塑料复合管》CJ/T125和《燃气用钢骨架聚乙烯塑料复合管件》CJ/T 126的规定。
6.3.2次高压燃气管道应采用钢管。其管材和附件应符合本规范第6.4.4条的要求。地下次高压B燃气管道也可采用钢号Q235B焊接钢管,并应符合现行国家标准《低压流体输送用焊接钢管》GB/T3091的规定。
    次高压钢质燃气管道直管段计算壁厚应按式(6.4.6)计算确定。最小公称壁厚不应小于表6.3.2的规定。

表6.3.2钢质燃气管道最小公称壁厚

6.3.3地下燃气管道不得从建筑物和大型构筑物(不包括架空的建筑物和大型构筑物)的下面穿越。
    地下燃气管道与建筑物、构筑物或相邻管道之间的水平和垂直净距,不应小于表6.3.3-1 和表6.3.3-2的规定。 

表6.3.3-1地下燃气管道与建筑物、构筑物或相邻管道之间的水平净距(m)

表6.3.3-2
地下燃气管道与构筑物或相邻管道之间垂直净距(m)

  注:1 当次高压燃气管道压力与表中数不相同时,可采用直线方程内插法确定水平净距。
        2 如受地形限制无法满足表6.3.3-1和表6.3.3-2规定的净距,经与有关部门协商,采取有效的安全防护措施后,表6.3.3-1 和表6.3.3-2 规定的净距,均可适当缩小,但低压管道应不影响建(构)筑物和相邻管道基础的稳固性,中压管道距建筑物基础不应小于0.5m且距建筑物外墙面不应小于1m,次高压燃气管道距建筑物外墙面不应小于3.0m。其中当对次高压A燃气管道采取有效的安全防护措施或当管道壁厚不小于9.5mm时,管道距建筑物外墙面不应小于6.5m;当管壁厚度不小于11.9mm时,管道距建筑物外墙面不应小于3.0m。
        3 表6.3.3-1和表6.3.3-2规定除地下室燃气管道与热力管的净距不适于聚乙烯燃气管道和钢骨架聚乙烯塑料复合管外,其它规定也均适用于聚乙烯燃气管道和钢骨架聚乙烯塑料复合管道。聚乙烯燃气管道与热力管道的净距应按国家现行标准《聚乙烯燃气管道工程技术规程》CJJ63 执行。
        4 地下燃气管道与电杆(塔)基础之间的水平净距,还应满足本规范表6.7.5地下燃气管道与交流电力线接地体的净距规定。

6.3.4地下燃气管道埋设的最小覆土厚度(路面至管顶)应符合下列要求:
    1 埋设在车行道下时,不得小于0.9m;
    2 埋设在非机动车车道(含人行道)下时,不得小于0.6m;
    3 埋设在机动车不可能到达的地方时,不得小于0.3m;
    4 埋设在水田下时,不得小于0.8m。
    注:当不能满足上述规定时,应采取行之有效的安全防护措施。
6.3.5输送湿燃气的燃气管道,应埋设在土壤冰冻线以下。
燃气管道坡向凝水缸的坡度不宜小于0.003。
6.3.6地下燃气管道的基础宜为原土层。凡可能引起管道不均匀沉降的地段,其基础应进行处理。
6.3.7地下燃气管道不得在堆积易燃、易爆材料和具有腐蚀性液体的场地下面穿越,并不宜与其他管道或电缆同沟敷设。当需要同沟敷设时,必须采取防护措施。
6.3.8地下燃气管道穿过排水管(沟)、热力管沟、联合地沟、隧道及其他各种用途沟槽内穿过时,应将燃气管道敷设于套管内。套管伸出构筑物外壁不应小于表6.3.3-1 中燃气管道与该构筑物的水平净距。套管两端应采用柔性的防腐、防水材料密封。
6.3.9燃气管道穿越铁路、高速公路、电车轨道和城镇主要干道时应符合下列要求:
    1 穿越铁路和高速公路的燃气管道,应加套管;
    注:当燃气管道采用定向钻穿越并取得铁路或高速公路部门同意时,可不加套管。
    2 穿越铁路的燃气管道的套管,应符合下列要求:
        1) 套管埋设的深度:铁路轨底至套管顶不应小于1.20m,并应符合铁路管理部门的要求;
        2) 套管宜采用钢管或钢筋混凝土管;
        3) 套管内径比燃气管道外径大100mm 以上;
        4) 套管两端与燃气管的间隙应采用柔性的防腐、防水材料密封,其一端应装设检漏管;
        5) 套管端部距路堤坡脚外距离不应小于2.0m。
    3 燃气管道穿越电车轨道和城镇主要干道时宜敷设在套管或地沟内;穿越高速公路的燃气管道的套管、穿越电轨道和城镇主要干道的燃气管道的套管或地沟,并应符合下列要求:
        1)套管内径应比燃气管道外径大100mm以上,套管或地沟两端应密封,在重要地段的套管或管沟端部宜安装检漏管;
        2)套管端部距电车道边轨不应小于2.0m;距道路边缘不应小于1.0m。
    4 燃气管道宜垂直穿越铁路、高速公路、电车轨道和城镇主要干道。
6.3.10燃气管道通过河流时,可采用穿越河底或采用管桥跨越的形式。当条件许可时,可利用道路桥梁跨越河流,并应符合下列要求:
    1 随桥梁跨越河流的燃气管道,其管道的输送压力不应大于0.4MPa。
    2 当燃气管道随桥梁敷设或采用管桥跨越河流时,必须采取安全防护措施。
    3 燃气管道随桥梁敷设,宜采取如下安全防护措施:
        1)敷设于桥梁上的燃气管道应采用加厚的无缝钢管或焊接钢管,尽量减少焊缝,对焊缝进行100%无损探伤;
        2)跨越通航河流的燃气管道底标高,应符合通航净空的要求,管架外侧应设置护桩;
        3)在确定管道位置时,与随桥敷设的其他管道的间距应符合现行国家标准《工业企业煤气安全规程》GB6222支架敷管的有关规定;
        4)管道应设置必要的补偿和减震措施;
        5)对管道应做较高等级的防腐保护;
        对于采用阴极保护的埋地钢管与随桥管道之间应设置绝缘装置;
        6)跨越河流的燃气管道的支座(架)应采用不燃烧材料制作。
6.3.11燃气管道穿越河底时,应符合下列要求:
    1 燃气管道宜采用钢管;
    2 燃气管道至河床的覆土厚度,应根据水流冲刷条件及规划河床确定。对不通航河流不应小于0.5m;对通航的河流不应小于1.0m,还应考虑疏浚和投锚深度;
   
3 稳管措施应根据计算确定;
    4 在埋设燃气管道位置的河流两岸上、下游应设立标志。
6.3.12 穿越或跨越重要河流的燃气管道,在河流两岸均应设置阀门。
6.3.13在次高压、中压燃气干管上,应设置分段阀门,并应在阀门两侧设置放散管。在燃气支管的起点处,应设置阀门。
6.3.14地下燃气管道上的检测管、凝水缸的排水管、水封阀和阀门,均应设置护罩或护井。
6.3.15室外架空的燃气管道,可沿建筑物外墙或支柱敷设。并应符合下列要求:
    1 中压和低压燃气管道,可沿建筑耐火等级不低于二级的住宅或公共建筑的外墙敷设;
    次高压B、中压和低压燃气管道,可沿建筑耐火等级不低于二级的丁、戊类生产厂房的外墙敷设。

    2 沿建筑物外墙的燃气管道距住宅或公共建筑物门、窗洞口的净距:中压管道不应小于0.5m,低压管道不应小于0.3m。燃气管道距生产厂房建筑物门、窗洞口的净距不限。
    3 架空燃气管道与铁路、道路、其它管线交叉时的垂直净距不应小于表6.3.15的规定。

表6.3.15架空燃气管道与铁路、道路、其它管线交叉时的垂直净距

   注:1 厂区内部的燃气管道,在保证安全的情况下,管底至道路路面的垂直净距可取4.5m;管底至铁路轨顶的垂直净距,可取5.5m。在车辆和人行道以外的地区,可在从地面到管底高度不小于0.35m的低支柱上敷设燃气管道。
          2 电气机车铁路除外。
          3 架空电力线与燃气管道的交叉垂直净距尚应考虑导线的最大垂度。

    4 输送湿燃气的管道应采取排水措施,在寒冷地区还应采取保温措施。燃气管道坡向凝水缸的坡度不宜小于0.003。
    5 工业企业内燃气管道沿支柱敷设时,尚应符合现行的国家标准《工业企业煤气安全规程》GB6222的规定。


条文说明

6.3压力不大于1.6MPa的室外燃气管道
6.3.1中、低压燃气管道因内压较低,其可选用的管材比较广泛,其中聚乙烯管由于质轻、施工方便、使用寿命长而被广泛使用在天然气输送上。机械接口球墨铸铁管是近年来开发并得到广泛应用的一种管材,它替代了灰口铸铁管,这种管材由于在铸铁熔炼时在铁水中加入少量球化剂,使铸铁中石墨球化,使其比灰口铸铁管具有较高的抗拉、抗压强度,其冲击性能为灰口铸铁管10倍以上。钢骨架聚乙烯塑料复合管是近年我国新开发的一种新型管材,其结构为内外两层聚乙烯层,中间夹以钢丝缠绕的骨架,其刚度较纯聚乙烯管好,但开孔接新管比较麻烦,故只作输气干管使用。根据目前产品标准的压力适应范围和工程实践,本规范将上述三种管材均列于中、低压燃气管道之列。
6.3.2次高压燃气管道一般在城镇中心城区或其附近地区埋设,此类地区人口密度相对较大,房屋建筑密集,而次高压燃气管道输送的是易燃、易爆气体且管道中积聚了大量的弹性压缩能,一旦发生破裂,材料的裂纹扩展速度极快,且不易止裂,其断裂长度也很长,后果严重。因此必须采用具有良好的抗脆性破坏能力和良好的焊接性能的钢管,以保证输气管道的安全。
    对次高压燃气管道的管材和管件,应符合本规范第6.4.4条的要求(即高压燃气管材和管件的要求)。但对于埋入地下的次高压B燃气管道,其环境温度在0℃以上,据了解在竣工和运行的城镇燃气管道中,有不少地下次高压燃气管道(设计压力0.4~1.6MPa)采用了钢号Q2358的《低压流体输送用焊接钢管》,并已有多年使用的历史。考虑到城镇燃气管道位于人口密度较大的地区,为保障安全在设计中对压力不大于0.8MPa的地下次高压B燃气管道采用钢号Q2358的《低压流体输送用焊接钢管》也是适宜的。(经对钢管制造厂调研,Q235A材料成分不稳定,故不宜采用)。
    最小公称壁厚是考虑满足管道在搬运和挖沟过程中所需的刚度和强度要求,这是参照钢管标准和有关国内外标准确定的,并且该厚度能满足在输送压力0.8MPa,强度系数不大于0.3时的计算厚度要求。例如在设计压力为0.8MPa,选用L245级钢管时,对应DN100~1050最小公称壁厚的强度设计系数为0.05~0.19。详见表29。

表29L245级钢管、设计压力P为0.8MPa、1.6MPa对应的强度设计系数F

 注:如果选用L210级钢管,强度设计系数F'为表中F值乘1.167。
6.3.3本条规定了敷设地下燃气管道的净距要求。
    地下燃气管道在城市道路中的敷设位置是根据当地远、近期规划综合确定的,厂区内煤气管道的敷设也应根据类似的原则,按工厂的规划和其他工种管线布置确定。另外,敷设地下燃气管道还受许多因素限制,例如:施工、检修条件、原有道路宽度与路面的种类、周围已建和拟建的各类地下管线设施情况、所用管材、管接口形式以及所输送的燃气压力等。在敷设燃气管道时需要综合考虑,正确处理以上所提供的要求和条件。本条规定的水平净距和垂直净距是在参考各地燃气公司和有关其他地下管线规范以及实践经验后,在保证施工和检修时互不影响及适当考虑燃气输送压力影响的情况下而确定的,基本沿用原规范数据,现补充说明如下:
    1 与建筑物及地下构筑物的净距
    长期实践经验与燃气管道漏气中毒事故的统计资料表明,压力不高的燃气管道漏气中毒事故的发生在一定范围内并不与燃气管道与建筑物的净距有必然关系,采用加大管道与房屋的净距的办法并不能完全避免事故的发生,相反会增加设计时管位选择的困难或使工程费用增加(如迁移其他管道或绕道等方法来达到规定的要求)。实践经验证明,地下燃气管道的安全运行与提高工程施工质量、加强管理密切相关。考虑到中、低压管道是市区中敷设最多的管道,故本次修订中将原规定的中压管道与建筑物净距予以适当减小,在吸收了香港的经验并采取有效的防护措施后,把次高、中、低压管道与建筑物外墙面净距,分别降至应不小于3m、1m(距建筑物基础0.5m)和不影响基础的稳固性。
    有效的防护措施是指:
        1) 增加管壁厚度,钢管可按表6.3.2酌情增加,但次高压A管道与建筑物外墙面为3m时,管壁厚度不应小于11.9mm对于聚乙烯管、球墨铸铁管和钢骨架聚乙烯塑料复合管可不采取增加厚度的办法;
        2) 提高防腐等级;
        3) 减少接口数量;
        4) 加强检验(100%无损探伤)等。
        以上措施根据管材种类不同可酌情采用。
    本条原规范是指到建筑物基础的净距,考虑到基础在管道设计时不便掌握,且次高压管道到建筑物净距要求较大,不会碰到建筑物基础,为方便管道布置,故改为到建筑物外墙面;中、低压管道净距要求较小,有可能碰到建筑物的基础,故规定仍指到建筑物基础的净距。
    应该说明的是,本规范规定的至建筑物净距综合了南北各地情况,低压管取至建筑物基础的净距为0.7m,对于北方地区,考虑到在开挖管沟时不至于对建筑物基础产生影响,应根据管道埋深适当加大与建筑物基础的净距。并不是要求一律按表6.3.3-1 水平净距进行设计,在条件许可时(如在比较宽敞的道路上敷设燃气管道)宜加大管道到建筑物基础的净距。
    2 地下燃气管道与相邻构筑物或管道之间的水平净距与垂直净距
        1) 水平净距:基本上是采用原规范规定,与现行的国家标准《城市工程管线综合规划规范》GB50289-98基本相同。
        2) 垂直净距:与现行的国家标准《城市工程管线综合规划规范》GB 50289-98完全一致。
6.3.4对埋深的规定是为了避免因埋设过浅使管道受到过大的集中轮压作用,造成设计浪费或出现超出管道负荷能力而损坏。
    按我国铸铁管的技术标准进行验算,条文中所规定的覆土深度,对于一般管径的铸铁管,其强度都是能适应的。如上海地区在车行道下最小覆土深度为0.8m的铸铁管,经长期的实践运行考验,情况良好。此次修编中将埋在车行道下的最小覆土深度由0.8m改为0.9m,主要是考虑到今后车行道上的荷载将会有所增加。对埋设在庭院内地下燃气管道的深度同埋设在非车行道下的燃气管道深度早先的规定是均不能小于0.6m。但在我国土壤冰冻线较浅的南方地区,埋设在街坊内泥土下的小口径管道(指口径50mm以下的)的覆土厚度一般为0.30m,这个深度同时也满足砌筑排水明沟的要求,参照中南地区、上海市煤气公司与四川省城市煤气设计施工规程,在修订中增加了对埋设在机动车不可能到达地方的地下燃气管道覆土厚度为0.3m的规定,以节约工程投资。“机动车道”或“非机动车道”分别是指机动车能或不能通行的道路,这对于城市道路是容易区分的,对于居民住宅区内道路,按如下区分掌握:如果是机动车以正常行驶速度通行的主要道路则属于机动车道;住宅区内由上述主要道路到住宅楼门之间的次要道路,机动车只是缓行进入或停放的,可视为非机动车道。目前国内外有关燃气管道埋设深度的规定如表30所示。

表30国内外燃气管道的埋设深度(至管顶)(m)

续表30

6.3.5规定燃气管道敷设于冻土层以下,是防止燃气中冷凝液被冻结堵塞管道,影响正常供应。但在燃气中有些是干气,如长输的天然气等,故只限于湿气时才须敷设在冻土层以下。但管道敷设在地下水位高于输气管道敷设高度的地区时,无论是对湿气还是干气,都应考虑地下水从管道不严密处或施工时灌入的可能,故为防止地下水在管内积聚也应敷设有坡度,使水容易排除。
    为了排除管内燃气冷凝水,要求管道保持一定的坡度。国内外有关燃气管道坡度的规定如表31,地下燃气管道的坡度国内外一般所采用的数值大部分都不小于0.003。但在很多旧城市中的地下管一般都比较密集,往往有时无法按规定坡度敷设,在这种情况下允许局部管段坡度采取小于0.003的数值,故本条规范用词为“不宜”。

表31国内外室外地下燃气管道的坡度

6.3.7地下燃气管道在堆积易燃、易爆材料和具有腐蚀性液体的场地下面通过时,不但增加管道负荷和容易遭受侵蚀,而且当发生事故时相互影响,易引起次生灾害。
    燃气管道与其他管道或电缆同沟敷设时,如燃气管道漏气易引起燃烧或爆炸,此时将影响同沟敷设的其他管道或电缆使其受到损坏;又如电缆漏电时,使燃气管道带电,易产生人身安全事 故。故对燃气管道说来不宜采取和其他管道或电缆同沟敷设;而把同沟敷设的做法视为特殊情况,必须提出充足的理由并采取良好的通风和防爆等防护措施才允许采用。
6.3.8地下燃气管道不宜穿过地下构筑物,以免相互产生不利影响。当需要穿过时,穿过构筑物内的地下燃气管应敷设在套管内,并将套管两端密封,其一是为了防止燃气管被损或腐蚀而造成泄漏的气体沿沟槽向四周扩散,影响周围安全;其二若周围泥土流人安装后的套管内后,不但会导致路面沉陷,而且燃气管的防腐层也会受到损伤。
    关于套管伸出构筑物外壁的长度原规范规定为不小于0.1m,考虑到套管与构筑物的交接处形成薄弱环节,并且由于伸出构筑物外壁长度较短,构筑物在维修或改建时容易影响燃气管道的安全,且对套管与构筑物之间采取防水渗漏措施的操作较困难,故修订时将套管伸出构筑物外壁的长度由原来的0.1m改为表6.3.3-1 燃气管道与该构筑物的水平净距,其目的是为了更好地保护套管内的燃气管道和避免相互影响。
6.3.9本条规定了燃气管道穿越铁路、高速公路、电车轨道或城镇主要干道时敷设要求。
    套管内径裕量的确定应考虑所穿入的燃气管根数及其防腐层的防护带或导轮的外径、管道的坡度、可能出现的偏弯以及套管材料与顶管方法等因素。套管内径比燃气管道外径大100mm以上的规定系参照:①加拿大燃气管线系统规程中套管口径的规定:燃气管外径小于168.3mm时,套管内径应大于燃气管外径50mm以上;燃气管外径大于或等于168.3mm时,套管内径应大于燃气管外径75mm以上;②原苏联建筑法规关于套管直径应比燃气管道直径大100mm以上的规定;③我国西南地区的《城市煤气输配及应用工程设计、安装、验收技术规定》中关于套管内径应大于输气管外径100mm的规定等,是结合施工经验而定的。
    燃气管道不应在高速公路下平行敷设,但横穿高速公路是允许的,应将燃气管道敷设在套管中,这在国外也常采用。
    套管端部距铁路堤坡脚的距离要求是结合各地经验并参照“石油天然气管道保护条例第五章第二节第4条”的规定编制。
6.3.10燃气管道通过河流时,目前采用的有穿越河底、敷设在桥梁上或采用管桥跨越等三种形式。一般情况下,北方地区由于气温较低,采用穿越河底者较多,其优点是不需保温与经常维修,缺点是施工费用高,损坏时修理困难。南方地区则采用敷设在桥梁上或采用管桥跨越形式者较多,例如上海市煤气和天然气管道通过河流采用敷设于桥梁上的方式很多。南京、广州、湘潭和四川亦有很多燃气管道采用敷设于桥梁上,其输气压力为0.1~1.6MPa。上述敷设于桥梁上的燃气管道在长期(有的已达百年)的运行过程中没有出现什么问题。利用桥梁敷设形式的优点是工程费用低,便于检查和维修。
    上述敷设在桥梁上通过河流的方式实践表明有着较大的优点,但与《城市桥梁设计准则》原规定燃气管道不得敷设于桥梁上有矛盾。为此2001年6月5日由建设部标准定额研究所召开有建设部城市建设研究院、《城镇燃气设计规范》主编单位中国市政工程华北设计研究院和《城市桥梁设计准则》主编单位上海市政工程设计研究院,以及北京市政工程设计研究院、部分城市煤气公司、市政工程设计和管理部门等参加的协调会,与会专家经过讨论达成如下共识,一致认为“两个标准的局部修订协调应遵循以下三个原则:①安全适用、技术先进、经济合理;②必须符合国家有关法律、法规的规定;③必须采取具体的安全防护措施。确定条文改为:当条件许可,允许利用道路桥梁跨越河流时,必须采取安全防护措施。并限定燃气管道输送压力不应大于0.4MPa”。
    本条文是按上述协调会结论和会后协调修订的,并补充了安全防护措施规定。
6.3.11原规范规定燃气管道穿越河底时,燃气管道至规划河底的覆土深度只提出应根据水流冲刷条件确定并不小于0.5m,但水流冲刷条件的提法不具体又很难界定,此次修订增加了对通航河流及不通航河流分别规定了不同的覆土深度,目的是不使管道裸露于河床上。另外根据有关河、港监督部门的意见,以往有些过河管道埋于河底,因未满足疏浚和投锚深度要求,往往受到破坏,故规定“对通航的河流还应考虑疏浚和投锚深度”。
6.3.12对于穿越和跨越重要河流的燃气管道,从船舶运行与水流冲刷的条件看,要预计到它受到损坏的可能性,且损坏之后修复时间较长,而重要河流必然担负着运输等项重大任务,不能允许受到燃气管道破坏时的影响,为了当一旦燃气管道破坏时便于采取紧急措施,故规定在河流两侧均应设置阀门。
6.3.13本条规定了阀门的布置要求。
    在次高压、中压燃气干管上设置分段阀门,是为了便于在维修或接新管操作或事故时切断气源,其位置应根据具体情况而定,一般要掌握当两个相邻阀门关闭后受它影响而停气的用户数不应太多。
    将阀门设置在支管上的起点处,当切断该支管供应气时,不致影响干管停气;当新支管与干管连接时,在新支管上的起点处所设置的阀门,也可起到减少于管停气时间的作用。
    在低压燃气管道上,切断燃气可以采用橡胶球阻塞等临时措施,故装设阀门的作用不大,且装设阀门增加投资、增加产生漏气的机会和日常维修工作。故对低压管道是否设置阀门不作硬性规定。
6.3.14地下管道的检测管、凝水缸的排水管均设在燃气管道上方,且在车行道部分的燃气管经常遭受车辆的重压,由于检测和排水管口径较小,如不进行有效保护,容易受损,因此应在其上方设置护罩。并且管口在护罩内也便于检测和排水时的操作。
    水封阀和阀门由于在检修和更换时人员往往要至地下操作,
    设置护井可方便维修人员操作。
6.3.15燃气管道沿建筑物外墙敷设的规定,是参照苏联建筑法规《燃气供应》CHnIl2.04.08-87确定。其中“不应敷设燃气管道的房间”见本规范第10.2.14条。
    与铁路、道路和其他管线交叉时的最小垂直净距是按《工业企业煤气安全规程》GB6222和上海市的规定而定;与架空电力线最小垂直净距是按《66kV及以下架空电力线路设计规范》GB50061—97的规定而定。

6.4 压力大于1.6MPa的室外燃气管道


 

6.4.1本节适用于压力大于1.6MPa(表压)但不大于4.0MPa(表压)的城镇燃气(不包括液态燃气)室外管道工程的设计。
6.4.2城镇燃气管道通过的地区,应按沿线建筑物的密集程度划分为四个管道地区等级,并依据地区等级作出相应的管道设计。
6.4.3城镇燃气管道地区等级的划分应符合下列规定:
    1 沿管道中心线两侧各200m范围内,任意划分为1.6km长并能包括最多供人居住的独立建筑物数量的地段,作为地区分级单元。
    注:在多单元住宅建筑物内,每个独立住宅单元按一个供人居住的独立建筑物计算。    
    2 管道地区等级应根据地区分级单元内建筑物的密集程度划分,并应符合下列规定:
        1)一级地区:有12个或12个以下供人居住的独立建筑物。
        2)二级地区:有12个以上,80个以下供人居住的独立建筑物。
        3)三级地区:介于二级和四级之间的中间地区。有80个和80个以上供人居住的独立建筑物但不够四级地区条件的地区、工业区或距人员聚集的室外场所90m内铺设管线的区域。
        4)四级地区:4层或4层以上建筑物(不计地下室层数)普遍且占多数、交通频繁、地下设施多的城市中心城区(或镇的中心区域等)。
    3 二、三、四级地区的长度可按如下规定调整:
        1) 四级地区垂直于管道的边界线距最近地上4层或4层以上建筑物不应小于200m。
        2) 二、三级地区垂直于管道的边界线距该级地区最近建筑物不应小于200m。
    4 确定城镇燃气管道地区等级,宜按城市规划为该地区的今后发展留有余地。
6.4.4高压燃气管道采用的钢管和管道附件材料应符合下列要求:
    1 燃气管道所用钢管、管道附件材料的选择,应根据管道的使用条件(设计压力、温度、介质特性、使用地区等)、材料的焊接性能等因素,经技术经济比较后确定。
    2 燃气管道选用的钢管,应符合现行的国家标准《石油天然气工业 输送钢管交货技术条件 第1部分:A级钢管》GB/T 9711.1(L175级钢管除外)、《石油天然气工业 输送钢管交货技术条件 第2部分:B级钢管》GB/T 9711.2 和《输送流体用无缝钢管》GB/T 8163的规定,或符合不低于上述三项标准相应技术要求的其它钢管标准。三级和四级地区高压燃气管道材料钢级不应低于L245。
    3 燃气管道所采用的钢管和管道附件应根据选用的材料、管径、壁厚、介质特性、使用温度及施工环境温度等因素,对材料提出冲击试验和(或)落锤撕裂试验要求。
    4 当管道附件与管道采用焊接连接时,两者材质应相同或相近。
    5 管道附件中所用的锻件,应符合国家现行标准《压力容器用碳素钢和低合金钢锻件》JB 4726、《低温压力容器用低合金钢锻件》JB 4727的有关规定。
    6 管道附件不得采用螺旋焊缝钢管制作,严禁采用铸铁制作。
6.4.5燃气管道强度设计应根据管段所处地区等级和运行条件,按可能同时出现的永久载荷和可变载荷的组合进行设计。当管道位于地震设防烈度7度及7度以上地区时,应考虑管道所承受的地震载荷。
6.4.6钢质燃气管道直管段计算壁厚应按式(6.4.6)计算,计算所得到的厚度应按钢管标准规格向上选取钢管的公称壁厚。最小公称壁厚不应小于表6.3.2的规定。 

   式中:δ——钢管计算壁厚(mm);
        P——设计压力(MPa);
        D——钢管外径(mm);
        σs——钢管的最低屈服强度(MPa);
        F——强度设计系数,按表6.4.8和表6.4.9选取。
        φ——焊缝系数。当采用符合第6.4.4 条第2款规定的钢管标准时取1.0。
6.4.7对于采用经冷加工后又经加热处理的钢管,当加热温度高于320℃(焊接除外)或采用经过冷加工或热处理的钢管煨弯成弯管时,则在计算该钢管或弯管壁厚时,其屈服强度应取该管材最低屈服强度(σs)的75% 。
6.4.8城镇燃气管道的强度设计系数(F)应符合表6.4.8的规定。 

表6.4.8城镇燃气管道的强度设计系数

6.4.9穿越铁路、公路和人员聚集场所的管道以及门站、储配站、调压站内管道的强度设计系数,应符合表6.4.9的规定。

表6.4.9穿越铁路、公路和人员聚集场所的管道
以及门站、储配站、调压站内管道的强度设计系数(F)

6.4.10下列计算或要求应符合现行的国家标准《输气管道工程设计规范》GB50251的相应规定:
    1 受约束的埋地直管段轴向应力计算和轴向应力与环向应力组合的当量应力校核;
    2 受内压和温差共同作用下弯头的组合应力计算;
    3 管道附件与没有轴向约束的直管段连接时的热膨胀强度校核;
    4 弯头和弯管的管壁厚度计算;
    5 燃气管道径向稳定校核。
6.4.11一级或二级地区地下燃气管道与建筑物之间的水平净距不应小于表6.4.11的规定。

表6.4.11一级或二级地区地下燃气管道与建筑物之间的水平净距(m)

 注:1 当燃气管道强度设计系数不大于0.4时,一级或二级地区地下燃气管道与建筑之间的水平净距可按表6.4.12 确定。
        2 水平净距是指管道外壁到建筑物出地面处外墙面的距离。建筑物是指平常有人的建筑物。
        3 当燃气管道压力与表中数不相同时,可采用直线方程内插法确定水平净距。
6.4.12三级地区地下燃气管道与建筑物之间的水平净距不应小于表6.4.12的规定。

6.4.12三级地区地下燃气管道与建筑物之间的水平净距(m)

注:1 如果对燃气管道采取行之有效的保护措施时, δ<9.5mm 的燃气管道也可采用表中B 行的水平净距。
        2 水平净距是指管道外壁到建筑物出地面处外墙面的距离。建筑物是指平常有人的建筑物。
        3 当燃气管道压力表中数不相同时,可采用直线方程内插法确定水平距离。
6.4.13高压地下燃气管道与构筑物或相邻管道之间的水平和垂直净距,不应小于表6.3.2-1和6.3.2-2次高压A的规定。但高压A和高压B地下燃气管道与铁路路堤坡脚的水平净距分别不应小于8m和6m;与有轨电车钢轨的水平净距分别不应小于4m和3m。
    注:当达不到本条净距要求时,采取行之有效的防护措施后,净距可适当缩小。

6.4.14四级地区地下燃气管道输配压力不宜大于1.6Mpa(表压)。其设计应遵守本规范6.3节的有关规定。
    四级地区地下燃气管道输配压力不应大于4.0MPa(表压)。
6.4.15高压燃气管道的布置应符合下列要求:
    1 高压燃气管道不宜进入四级地区;当受条件限制需要进入或通过四级地区时,应遵守下列规定:
        1)高压A地下燃气管道与建筑物外墙面之间的水平净距不应小于30m(当管壁厚度δ≥9.5mm或对燃气管道采取有效的保护措施时,不应小于15m);
        2)高压B地下燃气管道与建筑物外墙面之间的水平净距不应小于16m(当管壁厚度δ≥9.5mm或对燃气管道采取有效的保护措施时,不应小于10m);
        3)管道分段阀门应采用遥控或自动控制。
    2 高压燃气管道不应通过军事设施、易燃易爆仓库、国家重点文物保护单位的安全保护区、飞机场、火车站、海(河)、港码头。当受条件限制管道必须在本款所列区域通过时,必须采用安全防护措施。
    3 高压燃气管道宜采有埋地方式敷设。当个别地段需要采用架空敷设时,必须采取安全防护措施。
6.4.16当管道安全评估中危险性分析证明,可能发生事故的次数和结果合理时,可采用与表6.4.11和表6.4.12和6.4.15条不同的净距和采用表6.4.8和表6.4.9不同的强度设计系数(F)。
6.4.17焊接支管连接口的补强应符合下列规定:
    1 补强的结构型式可采用增加主管道或支管道壁厚或同时增加主、支管道壁厚、或三通、或拔制扳边式接口的整体补强型式,也可采用补强圈补强的局部补强型式。
    2 当支管道的公称直径大于或等于1/2主管道公称直径时,应采用三通。
    3 支管道的公称直径小于或等于50mm时,可不作补强计算。
    4 开孔削弱部分按等面积补强,其结构和数值计算应符合现行的国家标准《输气管道工程设计规范》GB 50251的相应规定。其焊接结构还应符合下述规定:
        1)主管道和支管道的连接焊缝应保证全焊透,其角焊缝腰高应大于或等于1/3的支管道壁厚,且不小于6mm;
        2)补强圈的形状应与主管道相符,并与主管道紧密贴合。焊接和热处理时补强圈上应开一排气孔,管道使用期间应将排气孔堵死,补强圈宜按国家现行标准《补强圈》JB/T4736选用。
6.4.18燃气管道附件的设计和选用应符合下列规定:
    1 管件的设计和选用应符合国家现行标准《钢铁对焊无缝管件》GB12459、《钢板制对焊管件》GB/T13401、《钢制法兰管件》GB/T17185、《钢制对焊管件》SY/T 0510和《钢制弯管》SY/T 5257等有关标准规定。
    2 管法兰的选用应符合国家现行标准《钢制管法兰》GB/T9112~GB/T9124、《大直径碳钢法兰》GB/T13402 或《钢制法兰、垫片、紧固件》HG20592~HG20635 的规定。法兰、垫片和紧固应考虑介质特性配套选用。
    3 绝缘法兰、绝缘接头的设计应符合国家现行标准《绝缘法兰设计技术规定》SY/T0516 的规定。
    4 非标钢制异径接头、凸形封头和平封头的设计,可参照现行的国家标准《钢制压力容器》GB150的有关规定。
    5 除对焊管件之外的的焊接预制单体(如集气管、清管器接收筒等),若其所用材料、焊接及检验不同于本规范所列要求时,可参照现行的国家标准《钢制压力容器》GB150进行设计、制造和检验。
    6 管道与、管件的管端焊接接头型式宜采用现行的国家标准《输气管道工程设计规范》GB50251的相应规定。
    7 用于改变管道走向的弯头、弯管应符合现行的国家标准《输气管道工程设计规范》GB50251的相应规定,且弯曲管其外侧减薄处应小于按式(6.4.6)计算得到的计算厚度。
6.4.19燃气管道阀门的设计应符合下列要求:
    1 在高压燃气干管上,应设置分段阀门;分段阀门的最大间距:以四级地区为主的管段不应大于8km;以三级地区为主的管段不应大于13km;以二级地区管段不应大于24km;以一级地区为主的管段不应大于32km。
    2 在高压燃气支管的起点处,应设置阀门。
    3 燃气管道阀门的选用应符合有关国家现行标准,并应选择适用于燃气介质的阀门。
    4 在防火区内关键部位使用的阀门,应具有耐火性能。需要通过清管器或电子检管器的阀门,应选用全通径阀门。
6.4.20高压燃气管道及管件设计应考虑日后清理管或电子检管的需要,并宜预留安装电子检管器收发装置的位置。
6.4.21埋地管线的锚固件应符合下列要求:
    1 埋地管线上弯管或迂回管处产生的纵向力,必须由弯管处的锚固件、土壤摩阻或由管子中的纵向应力加以抵消。
    2 若弯管处不用锚固件,则靠近推力起源点处的管子接头处应设计成能承受纵向接力。若接头未采取此种措施,则应加装适用的拉杆或拉条。
6.4.22高压燃气管道的地基、埋设地最小覆土厚度、穿越铁路和电车轨道、穿越高速公路和城镇主要干道、通过河流的形式和要求等应符合本规范6.3节有关条款的规定。
6.4.23市区外地下高压燃气管道沿线应设置里程桩、转角桩、交叉和警示牌等永久性标签。
    市区内地下高压燃气管道应设立管位警示标志。在距管顶不小于500m处应埋设警示带。


条文说明

6.4压力大于1.6MPa的室外燃气管道
6.4.2、6.4.3我国城镇燃气管道的输送压力均不高,本规范原规定的压力范围为小于或等于1.6MPa,保证管道安全除对管道强度、严密性有一定要求外,主要是控制管道与周围建筑物的距离,在实践中管道选线有时遇到困难。随着长输天然气的到来,输气压力必然提高,如果单纯保证距离则难以实施。在规范的修订中,吸收和引用了国外发达国家和我国GB50251规范的成果,采取以控制管道自身的安全性主动预防事故的发生为主,但考虑到城市人员密集,交通频繁,地下设施多等特殊环境以及我国的实际情况,规定了适当控制管道与周围建筑物的距离(详见本规范第6.4.11和6.4.12条说明),一旦发生事故时使恶性事故减少或将损失控制在较小的范围内。
    控制管道自身的安全性,如美国联邦法规49号192部分《气体管输最低安全标准》、美国国家标准ANSI/ASME B31.8和英国气体工程师学会标准IGE/TD/1等,采用控制管道及构件的强度和严密性,从管材设备选用、管道设计、施工、生产、维护到更新改造的全过程都要保障好,是一个质量保障体系的系统工程。其中保障管道自身安全的最重要设计方法,是在确定管壁厚度时按管道所在地区不同级别,采用不同的强度设计系数(计算采用的许用应力值取钢管最小屈服强度的系数)。因此,管道位置的地区等级如何划分,各级地区采用多大的强度设计系数,就是问题要点。
    管道地区等级的划分方法英国、美国有所不同,但大同小异。美国联邦法规和美国国家标准ANSI/ASME B31.8是按不同的独立建筑物(居民户)密度将输气管道沿线划分为四个地区等级,其划分方法是以管道中心线两侧各220码(约200m)范围内,任意划分为1英里(约1.6km)长并能包括最多供人居住独立建筑物(居民户)数量的地段,以此计算出该地段的独立建筑物(居民户)密度,据此确定管道地区等级;我国国家标准《输气管道工程设计规范》GB 50251的划分方法与美国法规和ANSI/ASME B31.8标准相同,但分段长度为2km;英国气体工程师学会标准IGE/TD/1是按不同的居民人数密度将输气管道沿线划分为三个地区等级,其划分方法是以管道中心线两侧各4倍管道距建筑物的水平净距(根据压力和管径查图)范围内,任意划分为1英里(约1.6km)长并能包括最多数量居民的地段,以此计算出该地段每公顷面积上的居民密度,并据此确定管道地区等级。从以上划分方法看,美国法规和标准划分合理,简单清晰,容易操作,故本规范管道地区等级的划分方法采用美国法规规定。
    几个国家和地区管道地区分级标准和强度设计系数F详见表32。

表32管道地区分级标准和强度设计系数F

续表32

   注:为了便于对比,我们均按美国标准要求计算,即折算为船管遭两边宽各200m,长1600m面积内(64×104m2)的户数计算(多单元住宅中,每一个独立单元按1户计算,每1户按3人计算)。表中的“户数”在各标准中表达略有不同,有“居民户数”、“居住建筑物数”和“供人居住的独立建筑物数”等。
    从表32可知,各标准对各级地区范围密度指数和描述是不尽相同的。在第6.4.3条第2款地区等级的划分中:
    1、2项从美国、英国、法国和我国GB 50251标准看,一级和二级地区的范围密度指数相差不大,(其中GB50251的二级地区密度指数相比国外标准差别稍大一些,这是编制该规范时根据我国农村实际情况确定的)。本规范根据上述情况,对一级和二级地区的范围密度指数取与GB50251相同。
    3 三级地区是介于二级和四级之间的中间地区。指供人居住的建筑物户数在80或80以上,但又不够划分为四级地区的任一地区分级单元。
    另外,根据美国标准ANSI/ASME B31.8,工业区应划为三级地区;根据美国联邦法规49-192,对距人员聚集的室外场所100码(约91m)范围也应定为三级地区;本规范均等效采用(取为90m),人员聚集的室外场所是指运动场、娱乐场、室外剧场或其他公共聚集场所等。
    4 根据英国标准IGE/TD/1(第四版)对燃气管道的T级地区(相当于本规范的四级地区)规定为“人口密度大,多层建筑多,交通频繁和地下服务设施多的城市或镇的中心区域”。并规定燃气管道的压力不大于1.6MPa,强度设计系数F一般不大于0.3等,更加符合城镇的实际情况和有利于安全,因而本规范对四级地区的规定采用英国标准。其中“多层建筑多”的含义明确为4层或4层以上建筑物(不计地下室层数)普遍且占多数;“城市或镇的中心区域”的含义明确为“城市中心城区(或镇的中心区域等)”。从而将4层或4层以上建筑物普遍且占多数的地区分为:城市的中心城区(或镇的中心区域等)和城市管辖的(或镇管辖的)其他地区两种情况,区别对待。在此需要进一步说明的是:
        1) 管道经过城市的中心城区(或镇的中心区域等)且4层或4层以上建筑物普遍且占多数同时具备才被划入管道的四级地区。
        2) 此处除指明包括镇的中心区域在内外,凡是与镇相同或比镇大的新城区、卫星城的中心区域等是否属于管道的四级地区,也应根据四级地区的地区等级划分原则确定。
        3) 对于城市的非中心城区(或镇的非中心区域等)地上4层或4层以上建筑物普遍且占多数的燃气管道地区,应划入管道的三级地区,其强度设计系数F=0.4,这与《输气管道设计规范》GB 50251中的燃气管道四级地区强度系数F是相同的。
        4) 城市的中心城区(不包括郊区)的范围宜按城市规划并应由当地城市规划部门确定。据了解:例如:上海市的中心城区规划在外环道路以内(不包括外环道路红线内)。又如:杭州市的中心城区规划在距外环道路内侧最少100m以内。
        5) “4层或4层以上建筑物普遍且占多数”可按任一地区分级单元中燃气管道任一单侧4层或4层以上建筑物普遍且占多数,即够此项条件掌握。建筑物层数的计算除不计地下室层数外,顶层为平常没有人的美观装饰观赏间、水箱间等时可不计算在建筑物层数内。
第6.4.3条第4款,关于今后发展留有余地问题,其中心含义是在确定地区等级划分时,应适当考虑地区今后发展的可能性,如果在设计一条新管道时,看到这种将来的发展足以改变该地区的等级,则这种可能性应在设计时予以考虑。至于这种将来的发展考虑多远,是远期、中期或近期规划,应根据具体项目和条件确定,不作统一规定。
6.4.4本条款是对高压燃气管道的材料提出的要求。
    2 钢管标准《石油天然气工业输送钢管交货技术条件第1部分:A级钢管》GB/T9711.1中L175级钢管有三种与相应制造工艺对应的钢管:无缝钢管、连续炉焊钢管和电阻焊钢管。其中连续炉焊钢管因其焊缝不进行无损检测,其焊缝系数仅为0.6,并考虑到175级钢管强度较低,不适用于高压燃气管道,因此规定高压燃气管道材料不应选用GB/T 9711.1标准中的L175级钢管。为便于管材的设计选用,将该条款规定的标准钢管的最低屈服强度列于表33。

表33钢管的最低屈服强度

 注:①GB/T9711.1、GB/T9711.2标准中,最低屈服强度即为规定总伸长应力Rt0.5
        ②在此列出与GB/T 9711.1、GB/T 9711.2对应的ANSI/API5L类似钢级,引自标准GB/T 9711.1、GB/T 9711.2标准的附录。
        ③S为钢管的公称壁厚。
    3 材料的冲击试验和落锤撕裂试验是检验材料韧性的试验。冲击试验和落锤撕裂试验可按照《石油天然气工业输送钢管交货技术条件第1部分:A级钢管》GB/T 9711.1标准中的附录D补充要求SR3和SR4或《石油天然气工业输送钢管交货技术条件第2部分:B级钢管》GB/T 9711.2标准中的相应要求进行。GB/T 9711.2标准将韧性试验作为规定性要求,GB/T 9711.1将其作为补充要求(由订货协议确定),GB/T 8163未提这方面要求。试验温度应考虑管道使用时和压力试验(如果用气体)时预测的最低金属温度,如果该温度低于标准中的试验温度(GB/T 9711.1为10℃,GB/T 9711.2为0℃),则试验温度应取该较低温度。
6.4.5管道的抗震计算可参照国家现行标准《输油(气)钢质管道抗震设计规范》SY/T 0450。
6.4.6直管段的计算壁厚公式与《输气和配气管线系统》AS-MEB31.8、《输气管道工程设计规范》GB50251等规范中的壁厚计算式是一致的。该公式是采用弹性失效准则,以最大剪应力理论推导得出的壁厚计算公式。因城镇燃气温度范围对管材强度没有影响,故不考虑温度折减系数。在确定管道公称壁厚时,一般不必考虑壁厚附加量。对于钢管标准允许的壁厚负公差,在确定强度设计系数时给予了适当考虑并加了裕量;对于腐蚀裕量,因本规范中对外壁防腐设计提出了要求,因此对外壁腐蚀裕量不必考虑,对于内壁腐蚀裕量可视介质含水分多少和燃气质量酌情
考虑。
6.4.7经冷加工的管子又经热处理加热到一定温度后,将丧失其应变强化性能,按国内外有关规范和资料,其屈服强度降低约25%,因此在进行该类管道壁厚计算或允许最高压力计算时应予以考虑。条文中冷加工是指为使管子符合标准规定的最低屈服强度而采取的冷加工(如冷扩径等),即指利用了冷加工过程所提高强度的情况。管子城弯的加热温度一般为800~1000℃,对于热处理状态管子,热弯过程会使其强度有不同程度的损失,根据ASME 31.8及一些热弯管机械性能数据,强度降低比率按25%考虑。
6.4.8强度设计系数F,根据管道所在地区等级不同而不同。并根据各国国情(如地理环境、人口等)其取值也有所不同。几个国家管道地区分级标准和强度设计系数F的取值情况详见表32。
    1 从美国、英国、法国和我国GB 50251标准看,对一级 和二级地区的强度设计系数的取值基本相同,本规范也取为0.72和0.60,与上述标准相同。
    2 对三级地区,英国标准比法国、美国和我国GB 50251标准控制严,其强度设计系数依次分别为0.3、4、0.5、0.5。考虑到对于城市的非中心城区(或镇的非中心区域等)地上4层或4层以上建筑物普遍且占多数的燃气管道地区,已划入管道的三级地区;对于城市的中心城区(或镇的中心区域等)三级和四级地区的分界线主要是以4层或4层以上建筑是否普遍且占多数为标准,而我国每户平均住房面积比发达国家要低很多,同样建筑面积的一幢4层楼房,我国的住户数应比发达国家多,而其他小于或等于3层的低层建筑,在发达国家大多是独门独户,我国则属多单元住宅居多,因而当我国采用发达国家这一分界线标准时,不少划入三级地区的地段实际户数已相当于进入发达国家四级地区规定的户数范围(地区分级主要与户数有关,但为了统计和判断方便又常以住宅单元建筑物数为尺度);参考英国、法国、美国标准和多伦多、香港等地的规定,本规范对三级地区强度设计系数取为0.4。
    3 对四级地区英国标准比法国、美国和我国GB 50251标准控制更严,这是由于英国标准提出四级地区是指城市或镇的中心区域且多层建筑多的地区(本规范已采用),同时又规定燃气管道压力不应超过1.6MPa(最近该标准第四版已由0.7MPa改为1.6MPa)。由于管道敷设有最小壁厚的规定,按L245级钢管和设计压力1.6MPa时反算强度设计系数约为0.10~0.38,一般比其他标准0.4低很多。香港采用英国标准,多伦多燃气公司市区燃气管道强度设计系数采用0.3。我国是一个人口众多的大国,城市人口(特别是四级地区)普遍比较密集,多层和高层建筑较多,交通频繁,地下设施多,高压燃气管道一旦破坏,对周围危害很大,为了提高安全度,保障安全,故要适当降低强度设计系数,参考英国标准和多伦多燃气公司规定,本规范对四级地区取为0.3。
6.4.9本条根据美国联邦法规49-192和我国GB 50251标准并结合第6.4.8条规定确定。
6.4.11、6.4.12关于地下燃气管道到建筑物的水平净距。
    控制管道自身安全是从积极的方面预防事故的发生,在系统各个环节都按要求做到的条件下可以保障管道的安全。但实际上管道难以做到绝对不会出现事故,从国内和国外的实践看也是如此,造成事故的主要原因是:外力作用下的损坏,管材、设备及焊接缺陷,管道腐蚀,操作失误及其他原因。外力作用下的损坏常常和法制不健全、管理不严有关,解决尚难到位;管材、设备和施工中的缺陷以及操作中的失误应该避免,但也很难杜绝;管道长期埋于地下,目前城镇燃气行业对管内、外的腐蚀情况缺乏有效的检测手段和先进设备,管道在使用后的质量得不到有效及时的监控,时间一长就会给安全带来隐患;而城市又是人群集聚之地,交通频繁、地下设施复杂,燃气管道压力越来越高,一旦破坏、危害甚大。因此,适当控制高压燃气管道与建筑物的距离,是当发生事故时将损失控制在较小范围,减少人员伤亡的一种有效手段。在条件允许时要积极去实施,在条件不允许时也可采取增加安全措施适当减少距离,为了处理好这一问题,结合国情,在本规范第6.4.11条、6.4.12条等效采用了英国气体工程
师学会IGE/TD/1《高压燃气输送钢管》标准的成果。
    1 从表6.4.11可见,由于高压燃气管道的弹性压缩能量主要与压力和管径有关,因而管道到建筑物的水平净距根据压力和管径确定。
    2 三级地区房屋建筑密度逐渐变大,采用表6.4.11的水平净距有困难,此时强度设计系数应取0.4(IGE/TD/1标准取0.3),即可采用表6.4.12(此时在一、二区也可采用)。其中:
        1) 采取行之有效的保护措施,表6.4.12中A行管壁厚度小于9.5mm的燃气管道可采用B行的水平净距。据IGE/TD/1标准介绍,“行之有效的保护措施”是指沿燃气管道的上方设置加强钢筋混凝土板(板应有足够宽度以防侧面侵入)或增加管壁厚度等措施,可以减少管道被破坏,或当管壁厚度达到9.5mm以上后可取得同样效果。因此在这种条件下,可缩小高压燃气管道到建筑物的水平净距。对于采用B行的水平净距有困难的局部地段,可将管壁厚度进一步加厚至不小于11.9mm后可采用C行的水平净距。
        2)据英国气体工程师学会人员介绍:经实验证明,在三级地区允许采用的挖土机,不会对强度设计系数不大于0.3(本规范取为0.4)管壁厚度不小于11.9mm的钢管造成破坏,因此采用强度设计系数不大于0.3(本规范为0.4)管壁厚度不小于11.9mm的钢管(管道材料钢级不低于L245),基本上不需要安全距离,高压燃气管道到建筑物3m的最小要求,是考虑挖土机的操作规定和日常维修管道的需要以及避免以后建筑物拆建对管道的影响。如果采用更高强度的钢管,原则上可以减少管壁的厚度(采用比11.9mm小),但采用前,应反复对它防御挖土机破坏管道的能力作出验证。
6.4.14、6.4.15这两条对不同压力级别燃气管道的宏观布局作了规定,以便创造条件减少事故及危害。规定四级地区地下燃气管道输配压力不宜大于l.6MPa,高压燃气管道不宜进入四级地区,不应从军事设施、易燃易爆仓库、国家重点文物保证区、机场、火车站、码头通过等,都是从有利于安全上着眼。但以上要求在受到条件限制时也难以实施(例如有要求燃气压力为高压A的用户就在四级地区,不得不从此通过,否则就不能供气或非常不合理等)。故本规范对管道位置布局只是提倡但不作硬性限制,对这些个别情况应从管道的设计、施工、检验、运行管理上加强安全防护措施,例如采用优质钢管、强度设计系数不大于0.3、防腐等级提高、分段阀门采用遥控或自动控制、管道到建筑物的距离予以适当控制、严格施工检验、管道投产后对管道的运行状况和质量监控检查相对多一些等。
    “四级地区地下燃气管道输配压力不应大于4.0MPa(表压)”这一规定,在一般情况下应予以控制,但对于大城市,如经论证在工艺上确实需要且在技术、设备和管理上有保证,并经城市建设主管部门批准,压力大于4.0MPa的燃气管道也可进入四级地区,其设计宜按《输气管道工程设计规范》GB50251并参照本规范4.0MPa燃气管道的有关规定执行(有关规定主要指:管道强度设计系数、管道距建筑物的距离等)。
    第6.4.15条中高压A燃气管道到建筑物的水平净距30m是参考温哥华、多伦多市的规定确定的。几个城市高压燃气管道到建筑物的净距见表34。

表34.png

本条中所述“对燃气管道采取行之有效的保护措施”,是指沿燃气管道的上方设置加强钢筋混凝土板(板应有足够宽度以防侧面侵入)或增加管壁厚度等措施。
6.4.16在特殊情况下突破规范的设计今后可能会遇到,本条等效采用英国IGE/TD/1标准,对安全评估予以提倡,以利于我国在这方面制度和机构的建设。承担机构应具有高压燃气管道评估的资质、并由国家有关部门授权。
6.4.18管道附件的国家标准目前还不全,为便于设计选用,列入了有关行业标准。
6.4.19本条对高压燃气管道阀门的设置提出了要求。
    1 分段阀门的最大间距是等效采用美国联邦法规49-192的规定。
6.4.20对于管道清管装置工程设计中已普遍采用。而电子检管目前国内很少见。电子检管现在发达国家已日益普遍,已被证实为一有效的管道状况检查方法,且无需挖掘或中断燃气供应。对暂不装设电子检管装置的高压燃气管道,宜预留安装电子检管器收发装置的位置。

6.5 门站和储配站


 

6.5.1本节适用于城镇燃气输配系统中,接受气源来气并进行净化、加臭、储存、控制供气压力、气量分配、计量和气质检测的门站和储配站的工程设计。
6.5.2 门站和储配站站址选择应符合下列要求:
    1 站址应符合城镇总体规划的要求;
    2 站址应具有适宜的地形、工程地质、供电、给水排水和通信等条件;
    3 门站和储配站应少占农田、节约用地并注意与城镇景观等协调;
    4 门站站址应结合长输管线位置确定;
    5 根据输配系统具体情况,储配站与门站可合建;
    6 储配站内的储气罐与站外的建、构筑物的防火间距应符合现行国家标准《建筑设计防火规范》GB50016的有关规定。站内露天燃气工艺装置与站外建、构筑物的防火间距应符合甲类生产厂房与厂外建、构筑物的防火间距的要求。
6.5.3储配站内的储气罐与站内的建、构筑物的防火间距应符合表6.5.3的规定。
表6.5.3 储气罐与站内的建、构筑物的防火间距(m)
注:1 低压湿式储气罐与站内的建、构筑物的防火间距,应按本表确定;
        2 低压干式储气罐与站内的建、构筑物的防火间距,当可燃气体的密度比空气大时,应按本表增加25%;比空气小或等于时,可按本表确定;
        3 固定容积储气罐与站内的建、构筑物的防火间距应按本表的规定执行。总容积按其几何容积(m3)和设计压力(绝对压力,103kPa)的乘积计算;
        4 低压湿式或干式储气罐的水封室、油泵房和电梯间等附属设施与该储罐的间距按工艺要求确定;
        5 露天燃气工艺装置与储气罐的间距按工艺要求确定。
6.5.4储气罐或罐区之间的防火间距。应符合下列要求:
    1 湿式储气罐之间、干式储气罐之间、湿式储气罐与干式储气罐之间的防火间距,不应小于相邻较大罐的半径;
    2 固定容积储气罐之间的防火间距,不应小于相邻较大罐直径的2/3;
    3 固定容积储气罐与低压湿式或干式储气罐之闻的防火间距,不应小于相邻较大罐的半径;
    4 数个固定容积储气罐的总容积大于200000m3时,应分组布置。组与组之间的防火间距:卧式储罐,不应小于相邻较大罐长度的一半;球形储罐,不应小于相邻较大罐的直径。且不应小于20.0m;
    5 储气罐与液化石油气罐之间防火间距应符合现行国家标准《建筑设计防火规范》GB50016的有关规定。
6.5.5门站和储配站总平面布置应符合下列要求:
    
1 总平面应分区布置,即分为生产区(包括储罐区、调压计量区、加压区等)和辅助区。
    2 站内的各建构筑物之间以及与站外建构筑物之间的防火间距应符合现行国家标准《建筑设计防火规范》GB50016的有关规定。站内建筑物的耐火等级不应低于现行国家标准《建筑设计防火规范》GB50016“二级”的规定。
    3 站内露天工艺装置区边缘距明火或散发火花地点不应小于20m,距办公、生活建筑不应小于18m,距围墙不应小于10m。与站内生产建筑的间距按工艺要求确定。
    4 储配站生产区应设置环形消防车通道。消防车通道宽度不应小于3.5m。

6.5.6当燃气无臭味或臭味不足时,门站或储配站内应设置加臭装置。加臭量应符合本规范第3.2.3条的有关规定。
6.5.7门站和储配站的工艺设计应符合下列要求:
    1 功能应满足输配系统输气调度和调峰的要求;
    2 站内应根据输配系统调度要求分组设置计量和调压装置,装置前应设过滤器;门站进站总管上宜设置分离器;
    3 调压装置应根据燃气流量、压力降等工艺条件确定设置加热装置;
    4 站内计量调压装置和加压设备应根据工作环境要求露天或在厂房内布置,在寒冷或风沙地区宜采用全封闭式厂房;
    5 进出站管线应设置切断阀门和绝缘法兰;
    6 储配站内进罐管线上宜设置控制进罐压力和流量的调节装置;
    7 当长输管道采用清管工艺时,其清管器的接收装置宜设置在门站内;
    8 站内管道上应根据系统要求设置安全保护及放散装置;
    9 站内设备、仪表、管道等安装的水平间距和标高均应便于观察、操作和维修。
6.5.8站内宜设置自动化控制系统,并宜作为输配系统的数据采集监控系统的远端站。
6.5.9站内燃气计量和气质的检验应符合下列要求:
    1 站内设置的计量仪表应符合表6.5.9的规定;
    2 宜设置测定燃气组分、发热量、密度、湿度和各项有害杂质含量的仪表。
表6.5.9站内设置的计量仪表
  注:表中“+”为应规定设置。
6.5.10燃气储存设施的设计应符合下列要求:
    1 储配站所建储罐容积应根据输配系统所需储气总容量、管网系统的调度平衡和气体混配要求确定;
    2 储配站的储气方式及储罐形式应根据燃气进站压力、供气规模、输配管网压力等因素,经技术经济比较后确定;
    3 确定储罐单体或单组容积时,应考虑储罐检修期间供气系统的调度平衡;
    4 储罐区宜设有排水设施。
6.5.11低压储气罐的工艺设计,应符合下列要求:
    1 低压储气罐宜分别设置燃气进、出气管,各管应设置关闭性能良好的切断装置,并宜设置水封阀,水封阀的有效高度应取设计工作压力(以Pa表示)乘0.1加500mm。燃气进、出气管的设计应能适应气罐地基沉降引起的变形;
    2 低压储气罐应设储气量指示器。储气量指示器应具有显示储量及可调节的高低限位声、光报警装置;
    3 储气罐高度超越当地有关的规定时应设高度障碍标志;
    4 湿式储气罐的水封高度应经过计算后确定;
    5 寒冷地区湿式储气罐的水封应设有防冻措施;
    6 干式储气罐密封系统,必须能够可靠地连续运行;
    7 干式储气罐应设置紧急放散装置;
    8 干式储气罐应配有检修通道。稀油密封干式储气罐外部应设置检修电梯。
6.5.12高压储气罐工艺设计,应符合下列要求:
    1 高压储气罐宜分别设置燃气进、出气管,不需要起混气作用的高压储气罐,其进、出气管也可合为一条;燃气进、出气管的设计宜进行柔性计算;
    2 高压储气罐应分别设置安全阀、放散管和排污管;
    3 高压储气罐应设置压力检测装置;

    4 高压储气罐宜减少接管开孔数量;
    5 高压储气罐宜设置检修排空装置;
    6 当高压储气罐罐区设置检修用集中放散装置时,集中放散装置的放散管与站外建、构筑物的防火间距不应小于表6.5.12-1的规定;集中放散装置的放散管与站内建、构筑物的防火间距不应小于表6.5.12-2的规定;放散管管口高度应高出距其25m内的建构筑物2m以上,且不得小于10m;
    7 集中放散装置宜设置在站内全年最小频率风向的上风侧。
表6.5.12-1集中放散装置的放散管与站外建、构筑物的防火间距

表6.5.12-2集中放散装置的放散管与站内建、构筑物的防火间距

6.5.13站内工艺管道应采用钢管。燃气管道设计压力大于0.4MPa时,其管材性能应分别符合现行国家标准《石油天然气工业输送钢管交货技术条件》GB/T9711、《输送流体用无缝钢管》GB/T8163的规定;设计压力不大于0.4MPa时,其管材性能应符合现行国家标准《低压流体输送用焊接钢管》GB/T3091的规定。
    阀门等管道附件的压力级别不应小于管道设计压力。

6.5.14燃气加压设备的选型应符合下列要求:
    1 储配站燃气加压设备应结合输配系统总体设计采用的工艺流程、设计负荷、排气压力及调度要求确定;
    2 加压设备应根据吸排气压力、排气量选择机型。所选用的设备应便于操作维护、安全可靠,并符合节能、高效、低振和低噪声的要求;
    3 加压设备的排气能力应按厂方提供的实测值为依据。站内加压设备的形式应一致,加压设备的规格应满足运行调度要求,并不宜多于两种。
    储配站内装机总台数不宜过多。每1~5台压缩机宜另设1台备用。
6.5.15压缩机室的工艺设计应符合下列要求:
    1 压缩机宜按独立机组配置进、出气管及阀门、旁通、冷却器、安全放散、供油和供水等各项辅助设施;
    2 压缩机的进、出气管道宜采用地下直埋或管沟敷设,并宜采取减振降噪措施;
    3 管道设计应设有能满足投产置换,正常生产维修和安全保护所必需的附属设备;
    4 压缩机及其附属设备的布置应符合下列要求:
        1) 压缩机宜采取单排布置;
        2) 压缩机之间及压缩机与墙壁之间的净距不宜小于1.5m;
        3) 重要通道的宽度小宜小于2m;
        4) 机组的联轴器及皮带传动装置应采取安全防护措施;
        5) 高出地面2m以上的检修部位应设置移动或可拆卸式的维修平台或扶梯;
        6) 维修平台及地坑周围应设防护栏杆;
    5 压缩机室宜根据设备情况设置检修用起吊设备;
    6 当压缩机采用燃气为动力时,其设计应符合现行国家标准《输气管道工程设计规范》GB50251和《石油天然气工程设计防火规范》GB50183的有关规定;
    7 压缩机组前必须设有紧急停车按钮。
6.5.16压缩机的控制室宜设在主厂房一侧的中部或主厂房的一端。控制室与压缩机室之间应设有能观察各台设备运转的隔声耐火玻璃窗。
6.5.17储配站控制室内的二次检测仪表及操作调节装置宜按表6.5.17规定设置。 

表6.5.17储配站控制室内二次检测仪表及调节装置

注:表中“+”为应规定设置。
6.5.18压缩机室、调压计量室等具有爆炸危险的生产用房应符合现行国家标准《建筑设计防火规范》GB50016的“甲类生产厂房”设计的规定。
6.5.19门站和储配站内的消防设施设计应符合现行国家标准《建筑设计防火规范》GB50016的规定,并符合下列要求:
    1 储配站在同一时间内的火灾次数应按一次考虑。储罐区的消防用水量不应小于表6.5.19的规定。
表6.5.19储罐区的消防用水量表
     注:固定容积的可燃气体储罐以组为单位,总容积按其几何窖积(m3)和设计压力(绝对压力,102kPa)的乘积计算。
    2 当设置消防水池时,消防水池的容量应按火灾延续时间3h计算确定。当火灾情况下能保证连续向消防水池补水时,其容量可减去火灾延续时间内的补水量。

    3 储配站内消防给水管网应采用环形管网,其给水干管不应少于2条。当其中一条发生故障时,其余的进水管应能满足消防用水总量的供给要求。
    4 站内室外消火栓宜选用地上式消火栓。
    5 门站的工艺装置区可不设消防给水系统。
    6 门站和储配站内建筑物灭火器的配置应符合现行国家标准《建筑灭火器配置设计规范》GB50140的有关规定。储配站内储罐区应配置干粉灭火器,配置数量按储罐台数每台设置2个;每组相对独立的调压计量等工艺装置区应配置干粉灭火器,数量不少于2个。
    注:1 干粉灭火器指8kg手提式干粉灭火器。
           2 根据场所危险程度可设置部分35kg手推式干粉灭火器。
6.5.20门站和储配站供电系统设计应符合现行国家标准《供配电系统设计规范》GB50052的“二级负荷”的规定。
6.5.21门站和储配站电气防爆设计符合下列要求:
    1 站内爆炸危险场所的电力装置设计应符合现行国家标准《爆炸和火灾危险环境电力装置设计规范》GB50058的规定。
    2 其爆炸危险区域等级和范围的划分宜符合本规范附录D的规定。
    3 站内爆炸危险厂房和装置区内应装设燃气浓度检测报警装置。
6.5.22储气罐和压缩机室、调压计量室等具有爆炸危险的生产用房应有防雷接地设施,其设计应符合现行国家标准《建筑物防雷设计规范》GB50057的“第二类防雷建筑物”的规定。
6.5.23门站和储配站的静电接地设计应符合国家现行标准《化工企业静电接地设计规程》HGJ28的规定。
6.5.24门站和储配站边界的噪声应符合现行国家标准《工业企业厂界噪声标准》GB12348的规定。


条文说明

6.5门站和储配站
6.5.1本节规定了门站和储配站的设计要求。
    在城镇输配系统中,门站和储配站根据燃气性质、供气压力、系统要求等因素,一般具有接收气源来气,控制供气压力、气量分配、计量等功能。当接收长输管线来气并控制供气压力、计量时,称之为门站。当具有储存燃气功能并控制供气压力时,称之为储配站。两者在设计上有许多共同的相似之处,为使规范简洁起见,本次修改将原规范第5.4节和5.5节合并。
    站内若设有除尘、脱萘、脱硫、脱水等净化装置,液化石油气储存,增热等设施时,应符合本规范其他章节相应的规定。
6.5.2 门站和储配站站址的选择应征得规划部门的同意并批准。在选址时,如果对站址的工程地质条件以及与邻近地区景观协调等问题注意不够,往往增大了工程投资又破坏了城市的景观。
    6 国家标准《建筑设计防火规范》GB50016规定了有关要求。
6.5.3为了使本规范的适用性和针对性更强,制定了表6.5.3。此表的规定与《建筑设计防火规范》的规定是基本一致的。表中的储罐容积是指公称容积。
6.5.4本条的规定与《建筑设计防火规范》的规定是一致的。
    5 《建筑设计防火规范》GB50016规定了有关要求。
6.5.5本条规定了站区总图布置的相关要求。
6.5.7本条规定了门站和储配站的工艺设计要求。
    3 调压装置流量和压差较大时,由于节流吸热效应,导致气体温度降低较多,常常引起管壁外结露或结冰,严重时冻坏装置,故规定应考虑是否设置加热装置。
    7 本条系指门站作为长输管道的末站时,将清管的接收装置与门站相结合时布置紧凑,有利于集中管理,是比较合理的,故予以推荐。但如果在长输管道到城镇的边上,由长输管道部门在城镇边上又设有调压计量站时,则清管器的接收装置就应设在长输管道部门的调压计量站,而不应设在城镇的门站。
    8 当放散点较多且放散量较大时,可设置集中放散装置。
6.5.10本条规定了燃气储存设施的设计要求。
    2 鉴于储罐造价较高而各型储罐造价差异也较大,因此在确定储气方式及储罐型式时应进行技术经济比较。
    3 各种储罐的技术指标随单体容积增加而显著改善。在确定各期工程建罐的单体容积时,应考虑储罐停止运行(检修)时供气系统的调度平衡,以防止片面追求增加储罐单体容积。
    4 罐区排水设施是指储罐地基下沉后应能防止罐区积水。
6.5.11本条规定了低压储气罐的工艺设计要求。
    2 为预防出现低压储气罐顶部塌陷而提出此要求。
    4 湿式储气罐水封高度一般规定应大于最大工作压力(以Pa表示)的1.5倍,但实际证明这一数值不能满足运行要求,故本规范提出应经计算确定。
    7 干式储气罐由于无法在罐顶直接放散,故要求另设紧急放散装置。
    8 为方便干式储气罐检修,规定了此条要求。
6.5.12本条规定了高压储气罐的工艺设计要求。
    1 由于进、出气管受温度、储罐沉降、地震影响较大,故规定宜进行柔性计算。
    4 高压储气罐开孔影响罐体整体性能。
    5 高压储罐检修时,由于工艺所限,罐内余气较多,故规定本条要求。可采用引射器等设备尽量排空罐内余气。
    6 大型球罐(3000m3以上)检修时罐内余气较多,为排除罐内余气,可设置集中放散装置。表6.5.12-1中的“路边”对公路是指用地界,对城市道路是指道路红线。
6.5.14本条规定了燃气加压设备选型的要求。
    3 规定压缩机组设置备用是为了保证安全和正常供气。“每1~5台燃气压缩机组宜另设1台备用”。这是根据北京、上海、天津与沈阳等地的备用机组的设置情况而规定的。如北京东郊储配站第一压缩车间的8台压缩机组中有2台为备用;天津千米桥储配站设计的14台压缩机组中有3台备用;上海水电路储配站的6台压缩机中有1台为备用等。从多年实际运行经验来看,上述各地备用数量是能适应生产要求的。
6.5.15本条规定了压缩机室的工艺设计要求。
    1、3 系针对工艺管道施工设计有时缺少投产置换及停产维修时必需的管口及管件而作出此规定。
    4 规定“压缩机宜采取单排布置”,这样机组之间相互干扰少,管理维修方便,通风也较好。但考虑新建、扩建时压缩机室的用地条件不尽相同,故规定“宜”。
6.5.16按照《建筑设计防火规范》GB50016要求,压缩机室与控制室之间应设耐火极限不低于3h的非燃烧墙。但是为了便于观察设备运转应设有生产必需的隔声玻璃窗。本条文与《工业企业煤气安全规程》GB6222-86第5.2.1条要求是一致的。
6.5.191此款与《建筑设计防火规范》GB50016的规定是一致的。
    储配站内设置的燃气气体储罐类型一般按压力分为两大类,即常压罐(压力小于lokPa)和压力罐(压力通常为0.5~1.6MPa)。常压罐按密封形式可分为湿式和干式储气罐,其储气几何容积是变化的,储气压力变化很小。压力罐的储气容积是固定的,其储气量随储气压力变化而变化。
    从燃气介质的性质来看,与液态液化石油气有较大的差别。气体储罐为单相介质储存,过程无相变。火灾时,着火部位对储罐内的介质影响较小,其温度、压力不会有较大的变化。从实际使用情况看,气体储罐无大事故发生。因此,气体储罐可以不设置固定水喷淋冷却装置。
    由于储罐的类型和规格较多,消防保护范围也不尽相同,表6.5.19的消防用水量,系指消火栓给水系统的用水量,是基本安全的用水量。
6.5.20原规范规定门站储配站为“一级负荷”主要是为了提高供气的安全可靠性。实际操作中,要达到“一级负荷”(应由两个电源供电,当一个电源发生故障时,另一个电源不应同时受到损坏)的电源要求十分困难,投资很大。“二级负荷”(由两回线路供电)的电源要求从供电可靠性上完全满足燃气供气安全的需要,当采用两回线路供电有困难时,可另设燃气或燃油发电机等自备电源,且可以大大节省投资,可操作性强。
6.5.21本条是在《爆炸和火灾危险环境电力装置设计规范》GB50058的基础上,结合燃气输配工程的特点和工程实践编制的。根据GB50058的有关内容,本次修订将原规范部分爆炸危险环境属“1区”的区域改为“2区”。由于爆炸危险环境区域的确定影响因素很多,设计时应根据具体情况加以分析确定。

6.6 调压站与调压装置


 

6.6.1 本节适用于城镇燃气输配系统中不同压力级别管道之间连接的调压站、调压箱(或柜)和调压装置的设计。
6.6.2调压装置的设置应符合下列要求:
    1 自然条件和周围环境许可时,宜设置在露天,但应设置围墙、护栏或车挡;
    2 设置在地上单独的调压箱(悬挂式)内时,对居民和商业用户燃气进口压力不应大于0.4MPa;对工业用户(包括锅炉房)燃气进口压力不应大于0.8MPa;
    3 设置在地上单独的调压柜(落地式)内时,对居民、商业用户和工业用户(包括锅炉房)燃气进口压力不宜大
于1.6MPa;
    4 设置在地上单独的建筑物内时,应符合本规范第6.6.12条的要求;
    5 当受到地上条件限制,且调压装置进口压力不大于0.4MPa时,可设置在地下单独的建筑物内或地下单独的箱体
内,并应分别符合本规范第6.6.14条和第6.6.5条的要求;
    6 液化石油气和相对密度大于0.75燃气的调压装置不得设于地下室、半地下室内和地下单独的箱体内。
6.6.3调压站(含调压柜)与其他建筑物、构筑物的水平净距应符合表6.6.3的规定。

表6.6.3调压站(含调压柜)与其他建筑物、构筑物水平净距(m)

  注:1 当调压装置露天设置时,则指距离装置的边缘;
         2 当建筑物(含重要公共建筑)的某外墙为无门、窗洞口的实体墙,且建筑物耐火等级不低于二级时,燃气进口压力级别为中压A或中压B的调压柜一侧或两侧(非平行),可贴靠上述外墙设置;
         3 当选不到上表净距要求时,采取有效措施,可适当缩小净距。

6.6.4地上调压箱和调压柜的设置应符合下列要求:
    1 调压箱(悬挂式)
        1) 调压箱的箱底距地坪的高度宜为1.0~1.2m,可安装在用气建筑物的外墙壁上或悬挂于专用的支架上;当安装在用气建筑物的外墙上时,调压器进出口管径不宜大于DN50;
        2) 调压箱到建筑物的门、窗或其他通向室内的孔槽的水平净距应符合下列规定:
        当调压器进口燃气压力不大于0.4MPa时,不应小于1.5m;
        当调压器进口燃气压力大于0.4MPa时,不应小于3.0m;
        调压箱不应安装在建筑物的窗下和阳台下的墙上;不应安装在室内通风机进风口墙上;
        3) 安装调压箱的墙体应为永久性的实体墙,其建筑物耐火等级不应低于二级;
        4) 调压箱上应有自然通风孔。
    2 调压柜(落地式)
        1) 调压柜应单独设置在牢固的基础上,柜底距地坪高度宜为0.30m;
        2) 距其他建筑物、构筑物的水平净距应符合表6.6.3的规定;
        3) 体积大于1.5m3的调压柜应有爆炸泄压口,爆炸泄压口不应小于上盖或最大柜壁面积的50%(以较大者为准);爆炸泄压口宜设在上盖上;通风口面积可包括在计算爆炸泄压口面积内;
        4) 调压柜上应有自然通风口,其设置应符合下列要求:
    当燃气相对密度大于0.75时,应在柜体上、下各设1%柜底面积通风口;调压柜四周应设护栏;
    当燃气相对密度不大于0.75时,可仅在柜体上部设4%柜底面积通风口;调压柜四周宜设护栏。
    3 调压箱(或柜)的安装位置应能满足调压器安全装置的安装要求。
    4 调压箱(或柜)的安装位置应使调压箱(或柜)不被碰撞,在开箱(或柜)作业时不影响交通。
6.6.5地下调压箱的设置应符合下列要求:
    1 地下调压箱不宜设置在城镇道路下,距其他建筑物、构筑物的水平净距应符合本规范表6.6.3的规定;
    2 地下调压箱上应有自然通风口,其设置应符合本规范第6.6.4条第2款4)项规定;
    3 安装地下调压箱的位置应能满足调压器安全装置的安装要求;
    4 地下调压箱设计应方便检修;
    5 地下调压箱应有防腐保护。
6.6.6单独用户的专用调压装置除按本规范第6.6.2和6.6.3条设置外,尚可按下列形式设置,但应符合下列要求:
    1 当商业用户调压装置进口压力不大于0.4MPa,或工业用户(包括锅炉)调压装置进口压力不大于0.8MPa时,可设置在用气建筑物专用单层毗连建筑物内:
        1) 该建筑物与相邻建筑应用无门窗和洞口的防火墙隔开,与其他建筑物、构筑物水平净距应符合本规范表6.6.3的规定;
        2) 该建筑物耐火等级不应低于二级,并应具有轻型结构屋顶爆炸泄压口及向外开启的门窗;
        3) 地面应采用撞击时不会产生火花的材料;
        4) 室内通风换气次数每小时不应小于2次;
        5) 室内电气、照明装置应符合现行的国家标准《爆炸和火灾危险环境电力装置设计规范》GB 50058的“1区”设计的规定。
    2 当调压装置进口压力不大于0.2MPa时,可设置在公共建筑的顶层房间内:
        1) 房间应靠建筑外墙,不应布置在人员密集房间的上面或贴邻,并满足本条第1款2)、3)、5)项要求;
        2) 房间内应设有连续通风装置,并能保证通风换气次数每小时不小于3次;
        3) 房间内应设置燃气浓度检测监控仪表及声、光报警装置。该装置应与通风设施和紧急切断阀连锁,并将信号引入该建筑物监控室;
        4) 调压装置应设有超压自动切断保护装置;
        5) 室外进口管道应设有阀门,并能在地面操作;
        6) 调压装置和燃气管道应采用钢管焊接和法兰连接。
    3 当调压装置进口压力不大于0.4MPa,且调压器进出口管径不大于DN100时,可设置在用气建筑物的平屋顶上,但应符合下列条件:
        1) 应在屋顶承重结构受力允许的条件下,且该建筑物耐火等级不应低于二级;
        2) 建筑物应有通向屋顶的楼梯;
        3) 调压箱、柜(或露天调压装置)与建筑物烟囱的水平净距不应小于5m。
    4 当调压装置进口压力不大于0.4MPa时,可设置在生产车间、锅炉房和其他工业生产用气房间内,或当调压装置进口压力不大于0.8MPa时,可设置在独立、单层建筑的生产车间或锅炉房内,但应符合下列条件:
        1) 应满足本条第1款2)、4)项要求;
        2) 调压器进出口管径不应大于DN80;
        3) 调压装置宜设不燃烧体护栏;
        4) 调压装置除在室内设进口阀门外,还应在室外引入管上设置阀门。
    注:当调压器进出口管径大于DN80时,应将调压装置设置在用气建筑物的专用单层房间内,其设计应符合本条第1款的要求。
6.6.7调压箱(柜)或调压站的噪声应符合现行国家标准《城市区域环境噪声标准》GB3096的规定。
6.6.8设置调压器场所的环境温度应符合下列要求:
    1 当输送干燃气时,无采暖的调压器的环境温度应能保证调压器的活动部件正常工作;
    2 当输送湿燃气时,无防冻措施的调压器的环境温度应大于0℃;当输送液化石油气时,其环境温度应大于液化石油气的露点。
6.6.9调压器的选择应符合下列要求:
    1 调压器应能满足进口燃气的最高、最低压力的要求;
    2 调压器的压力差,应根据调压器前燃气管道的最低设计压力与调压器后燃气管道的设计压力之差值确定;
    3 调压器的计算流量,应按该调压器所承担的管网小时最大输送量的1.2倍确定。
6.6.10调压站(或调压箱或调压柜)的工艺设计应符合下列要求:
    1 连接未成环低压管网的区域调压站和供连续生产使用的用户凋压装置宜设置备用调压器,其他情况下的调压器可不设备用。
    调压器的燃气进、出口管道之间应设旁通管,用户调压箱(悬挂式)可不设旁通管。
    2 高压和次高压燃气调压站室外进、出口管道上必须设置阀门;
    中压燃气调压站室外进口管道上,应设置阀门。

    3 调压站室外进、出口管道上阀门距调压站的距离:
    当为地上单独建筑时,不宜小于10m,当为毗连建筑物时,不宜小于5m;
    当为调压柜时,不宜小于5m;
    当为露天调压装置时,不宜小于10m;
    当通向调压站的支管阀门距调压站小于100m时,室外支管阀门与调压站进口阀门可合为一个。
    4 在调压器燃气入口处应安装过滤器。
    5 在调压器燃气入口(或出口)处,应设防止燃气出口压力过高的安全保护装置(当调压器本身带有安全保护装置时可不设)。
    6 调压器的安全保护装置宜选用人工复位型。安全保护(放散或切断)装置必须设定启动压力值并具有足够的能力。启动压力应根据工艺要求确定,当工艺无特殊要求时应符合下列要求:
        1) 当调压器出口为低压时,启动压力应使与低压管道直接相连的燃气用具处于安全工作压力以内;
        2) 当调压器出口压力小于0.08MPa时,启动压力不应超过出口工作压力上限的50%;
        3) 当调压器出口压力等于或大于0.08MPa,但不大于0.4MPa时,启动压力不应超过出口工作压力上限0.04MPa;
        4) 当调压器出口压力大于0.4MPa时,启动压力不应超过出口工作压力上限的10%。
    7 调压站放散管管口应高出其屋檐1.0m以上。
    调压柜的安全放散管管口距地面的高度不应小于4m;设置在建筑物墙上的调压箱的安全放教管管口应高出该建筑物屋檐1.0m;
    地下调压站和地下调压箱的安全放散管管口也应按地上调压柜安全放散管管口的规定设置。
    注:清洗管道吹扫用的放散管、指挥器的放散管与安全水封放散管属于同一工作压力时。允许将它们连接在同一放散管上。

    8 调压站内调压器及过滤器前后均应设置指示式压力表,调压器后应设置自动记录式压力仪表。
6.6.11地上调压站内调压器的布置应符合下列要求:
    1 调压器的水平安装高度应便于维护检修;
    2 平行布置2台以上调压器时,相邻调压器外缘净距、调压器与墙面之间的净距和室内主要通道的宽度均宜大于0.8m。
6.6.12地上调压站的建筑物设计应符合下列要求:
    1 建筑物耐火等级不应低于二级;
    2 调压室与毗连房间之间应用实体隔墙隔开,其设计应符合下列要求:
        1) 隔墙厚度不应小于24cm,且应两面抹灰;
        2) 隔墙内不得设置烟道和通风设备,调压室的其他墙壁也不得设有烟道;
        3) 隔墙有管道通过时,应采用填料密封或将墙洞用混凝土等材料填实;
    3 调压室及其他有漏气危险的房间,应采取自然通风措施,换气次数每小时不应小于2次;
    4 城镇无人值守的燃气调压室电气防爆等级应符合现行国家标准《爆炸和火灾危险环境电力装置设计规范》GB50058“1区”设计的规定(见附录图D7);
    5 调压室内的地面应采用撞击时不会产生火花的材料;
    6 调压室应有泄压措施,并应符合现行国家标准《建筑设计防火规范》GB50016的有关规定;
    7 调压室的门、窗应向外开启,窗应设防护栏和防护网;
    8 重要调压站宜设保护围墙;
    9 设于空旷地带的调压站或采用高架遥测天线的调压站应单独设置避雷装置,其接地电阻值应小于10Ω
  6.6.13燃气调压站采暖应根据气象条件、燃气性质、控制测量仪表结构和人员工作的需要等因素确定。当需要采暖时严禁在调压室内用明火采暖,但可采用集中供热或在调压站内设置燃气、电气采暖系统,其设计应符合下列要求:
    1 燃气采暖锅炉可设在与调压器室毗连的房间内;
    调压器室的门、窗与锅炉室的门、窗不应设置在建筑的同一侧;
    2 采暖系统宜采用热水循环式;
    采暖锅炉烟囱排烟温度严禁大于300℃;烟囱出口与燃气安全放散管出口的水平距离应大于5m;
    3 燃气采暖锅炉应有熄火保护装置或设专人值班管理;
    4 采用防爆式电气采暖装置时,可对调压器室或单体设备用电加热采暖。电采暖设备的外壳温度不得大于115℃。电采暖设备应与调压设备绝缘。
6.6.14地下调压站的建筑物设计应符合下列要求:
    1 室内净高不应低于2m;
    2 宜采用混凝土整体浇筑结构;
    3 必须采取防水措施;在寒冷地区应采取防寒措施;
    4 调压室顶盖上必须设置两个呈对角位置的人孔,孔盖应能防止地表水浸入,
    5 室内地面应采用撞击时不产生火花的材料,并应在一侧人孔下的地坪设置集水坑;
    6 调压室顶盖应采用混凝土整体浇筑。
6.6.15当调压站内、外燃气管道为绝缘连接时,调压器及其附属设备必须接地,接地电阻应小于100Ω。


条文说明

6.6调压站与调压装置
6.6.2调压装置的设置形式多种式样,设计时应根据当地具体情况,因地制宜地选择采用,本条对调压装置的设置形式(不包括单独用户的专用调压装置设置形式)及其条件作了一般规定。调压装置宜设在地上,以利于安全和运行、维护。其中:
    1 在自然条件和周围环境条件许可时,宜设在露天。这是较安全和经济的形式。对于大、中型站其优点较多。
    2、3 在环境条件较差时,设在箱子内是一种较经济适用的形式。分为调压箱(悬挂式)和调压柜(落地式)两种。对于中、小型站优点较多。具体做法见第6.6.4条。
    4 设在地上单独的建筑物内是我国以往用得较多的一种形式(与采用人工煤气需防冻有关)。
    5、6 当受到地上条件限制燃气相对密度不大于0.75,且压力不高时才可设置在地下,这是一种迫不得已才采用的形式。但相对密度大于0.75时,泄漏的燃气易集聚,故不得设于地下室、半地下室和地下箱内。
6.6.3本条调压站(含调压柜)与其他建、构筑物水平净距的规定,是参考了荷兰天然气调压站建设经验和规定,并结合我国实践,对原规范进行了补充和调整。表6.6.3中所列净距适用于按规范建设与改造的城镇,对于无法达到该表要求又必须建设的调压站(含调压柜),本规范留有余地,提出采取有效措施,可适当缩小净距。有效措施是指:有效的通风,换气次数每小时不小于3次;加设燃气泄漏报警器;有足够的防爆泄压面积(泄爆方向有必要时还应加设隔爆墙);严格控制火源等。各地可根据具体情况与有关部门协调解决。表6.6.3中的“一类高层民用建筑”详见现行国家标准《高层民用建筑设计防火规范》GB50045-95第3.0.1条(2005年版)。
6.6.4本条是调压箱和调压柜的设置要求。其中体积大于1.5m3调压柜爆炸泄压口的面积要求,是等效采用英国气体工程师学会标准IGE/TD/10和香港中华煤气公司的规定,当爆炸时能使柜内压力不超过3.5kPa,并不会对柜内任何部分(含仪表)造成损坏。
    调压柜自然通风口的面积要求,是等效采用荷兰天然气调压站(含调压柜)的建设经验和规定。
6.6.6“单独用户的专用调压装置”系指该调压装置主要供给一个专用用气点(如一个锅炉房、一个食堂或一个车间等),并由该用气点兼管调压装置,经常有人照看,且一般用气量较小,可以设置在用气建筑物的毗连建筑物内或设置在生产车间、锅炉房及其他生产用气厂房内。对于公共建筑也可设在建筑物的顶层内,这些做法在国内外都有成熟的经验,修订时根据国内的实践经验,补充了设在用气建筑物的平屋顶上的形式。
6.6.8我国最早使用调压器(箱)的省份都在南方,其环境温度影响较小。北方省份使用调压箱时,则环境温度的影响是不可低估的。对于输送干燃气应主要考虑环境温度,介质温度对调压器皮膜及活动部件的影响;而对于输送湿燃气,应防止冷凝水的结冻;对于输送气态液化石油气,应防止液化石油气的冷凝。
6.6.10本条规定了调压站(或调压箱或调压柜)的工艺设计要求。
    1 调压站的工艺设计主要应考虑该调压站在确保安全的条件下能保证对用户的供气。有些城市的区域调压站不分情况均设置备用调压器,这就加大了一次性建设投资。而有些城市低压管网不成环,其调压器也不设旁通管,一旦发生故障只能停止供气,更是不可取的。对于低压管网不成环的区域调压站和连续生产使用的用户调压装置宜设置备用调压器,比之旁通管更安全、可靠。
    2、3 调压器的附属设备较多,其中较重要的是阀门,各地对于调压站外设不设阀门有所争议。本条根据多数意见并参考国外规范,对高压和次高压室外燃气管道使用“必须”用语,而对中压室外进口燃气管道使用“应”的用语给予强调。并对阀门设置距离提出要求,以便在出现事故时能在室外安全操作阀门。
    6 调压站的超压保护装置种类很多,目前国内主要采用安全水封阀,适用于放散量少的情况,一旦放散量较多时对环境的污染及周围建筑的火灾危险性是不容忽视的,一些管理部门反映,在超压放散的同时,低压管道压力仍然有可能超过5000Pa,造成一些燃气表损坏漏气事故,说明放散法并不绝对安全,设计宜考虑使用能快速切断的安全阀门或其他防止超压的设备。调压的安全保护装置提倡选用人工复位型,在人工复位后应对调压器后的管道设备进行检查,防止发生意外事故。
    本款对安全保护装置(切断或放散)的启动压力规定,是等效采用美国联邦法规49-192《气体管输最低安全标准》的规定。
6.6.12本条规定了地上式调压站的建筑物设计要求。
    3 关于地上式调压站的通风换气次数,曾有过不同规定。北京最初定为每小时6次,但冬季感到通风面积太大,操作人员自动将进风孔堵上;后改为3次,但仍然认为偏大。上海地上调压站室内通风换气次数为2次,他们认为是能够满足运行要求的,冬季最冷的时候,调压器皮膜虽稍感有些僵硬,但未影响使用。《原苏联建筑法规》对地上调压站室内通风换气定为每小时3次。
    原上海市煤气公司曾用“臭敏检漏仪”对调压站室内煤气(人工煤气)浓度进行测定,在正常情况下(通风换气为每小时2次),地上调压站室内空气中的煤气含量是极少的,详见表35。
    综上所述,对地上式调压站室内通风换气次数规定为每小时不应小于2次。

表35上海市部分调压站室内煤气浓度的测定记录(体积分数)

6.6.13我国北方城镇燃气调压站采暖问题不易解决,所以本条规定了使用燃气锅炉进行自给燃气式的采暖要求,以期在无法采用集中供热时用此办法解决实际问题,对于中、低调压站,宜采用中压燃烧器作自给燃气式采暖锅炉的燃烧器,可以防止调压器故障引起停止供热事故。
    调压器室与锅炉室门、窗开口不应设置在建筑物的同一侧;烟囱出口与燃气安全放散管出口的水平距离应大于5m;这些都是防止发生事故的措施,应予以保证。
6.6.14本条给出地下式调压站的建筑要求。设计中还应提出调压器进、出口管道与建筑本身之间的密封要求,以防地下水渗漏事故。
6.6.15当调压站内外燃气管道为绝缘连接时,室内静电无法排除,极易产生火花引起事故,因此必须妥善接地。

6.7钢质燃气管道和储罐的防腐


 

6.7.1钢质燃气管道和储罐必须进行外防腐。其防腐设计应符合国家现行标准《城镇燃气埋地钢质管道腐蚀控制技术规程》CJJ95和《钢质管道及储罐腐蚀控制工程设计规范》SY0007的有关规定。
6.7.2地下燃气管道防腐设计,必须考虑土壤电阻率。对高、中压输气干管宜沿燃气管道途经地段选点测定其土壤电阻率。应根据土壤的腐蚀性、管道的重要程度及所经地段的地质、环境条件确定其防腐等级。
6.7.3地下燃气管道的外防腐涂层的种类,根据工程的具体情况,可选用石油沥青、聚乙烯防腐胶带、环氧煤沥青、聚乙烯防腐层、氯磺化聚乙烯、环氧粉末喷涂等。当选用上述涂层时,应符合国家现行有关标准的规定。
6.7.4采用涂层保护埋地敷设的钢质燃气干管应同时采用阴极保护
    市区外埋地敷设的燃气干管,当采用阴极保护时,宜采用强制电流方式,并应符合国家现行标准《埋地钢质管道强制电流阴极保护设计规范》SY/T0036的有关规定。
    市区内埋地敷设的燃气干管,当采用阴极保护时,宜采用牺牲阳极法,并应符合国家现行标准《埋地钢质管道牺牲阳极阴极保护设计规范》SY/T0019的有关规定。
6.7.5地下燃气管道与交流电力线接地体的净距不应小于表6.7.5的规定。

表6.7.5地下燃气管道与交流电力线接地体的净距(m)


条文说明

6.7钢质燃气管道和储罐的防腐
6.7.1金属的腐蚀是一种普遍存在的自然现象,它给人类造成的损失和危害是十分巨大的。据国家科委腐蚀科学学科组对200多个企业的调查表明,腐蚀损失平均值占总产值的3.97%。某市一条φ325输气干管,输送混合气(天然气与发生炉煤气),使用仅4年曾3次爆管,从爆管的部位查看,管内壁下部严重腐蚀,腐蚀麻坑直径5~14mm,深度达2mm,严重的腐蚀是引起爆管的直接原因。
    设法减缓和防止腐蚀的发生是保证安全生产的根本措施之一,对于城镇燃气输配系统的管线、储罐、场站设备等都需要采用优质的防腐材料和先进的防腐技术加以保护。对于内壁腐蚀防治的根本措施是将燃气净化或选择耐腐蚀的材料以及在气体中加入缓蚀剂;对于净化后的燃气,则主要考虑外壁腐蚀的防护。本条明确规定了对钢质燃气管道和储罐必须进行外防腐,其防腐设计应符合《城镇燃气埋地钢质管道腐蚀控制技术规程》CJJ95和《钢质管道及储罐腐蚀控制工程设计规范》SY0007的规定。


6.7.2 关于土壤的腐蚀性,我国还没有一种统一的方法和标准来划分。目前国内外对土壤的研究和统计指出,土壤电阻率、透气性、湿度、酸度、盐分、氧化还原电位等都是影响土壤腐蚀性的因素,而这些因素又是相互联系和互相影响的,但又很难找出它们之间直接的,定量的相关性。所以,目前许多国家和我国也基本上采用土壤电阻率来对土壤的腐蚀性进行分级,表36列出的分级标准可供参考。

表36土壤腐蚀等级划分参考表

注:中国数据摘自SY0007规范。
    土壤电阻率和土壤的地质、有机质含量、含水量、含盐量等有密切关系,它是表示土壤导电能力大小的重要指标。测定土壤电阻率从而确定土壤腐蚀性等级,这为选择防腐蚀涂层的种类和结构提供了依据。
6.7.3 随着科学技术的发展,地下金属管道防腐材料已从初期单一的沥青材料发展成为以有机高分子聚合物为基础的多品种、多规格的材料系列,各种防腐蚀涂层都具有自身的特点及使用条件,各类新型材料也具有很大的竞争力。条文中提出的外防腐涂层的种类,在国内应用较普遍。因它们具有技术成熟,性能较稳定,材料来源广,施工方便,防腐效果好等优点,设计人员可视工程具体情况选用。另外也可采用其他行之有效的防腐措施。
6.7.4地下燃气管道的外防腐涂层一般采用绝缘层防腐,但防腐层难免由于不同的原因而造成局部损坏,对于防腐层已被损坏了的管道,防止电化学腐蚀则显得更为重要。美国、日本等国都明确规定了采用绝缘防腐涂层的同时必须采用阴极保护。石油、天然气长输管道也规定了同时采用阴极保护。实践证明,采取这一措施都取得了较好的防护效果。阴极保护法已被推广使用。阴极保护的选择受多种因素的制约,外加电流阴极保护和牺牲阳极保护法各自又具有不同的特性和使用条件。从我国当前的实际情况考虑,长输管道采用外加电流阴极保护技术上是比较成熟的,也积累了不少的实践经验;而对于城镇燃气管道系统,由于地下管道密集,外加电流阴极保护对其他金属管道构筑物干扰大、互相影响,技术处理较难,易造成自身受益,他家受害的局面。而牺牲阳极保护法的主要优点在于此管道与其他不需要保护的金属管道或构筑物之间没有通电性,互相影响小,因此提出城市市区内埋地敷设的燃气干管宜选用牺牲阳极保护。
6.7.5接地体是埋入地中并直接与大地接触的金属导体。它是电力装置接地设计主要内容之一,是电力装置安全措施之一。其埋设地位置和深度、形式不仅关系到电力装置本身的安全问题,而且对地下金属构筑物都有较大的影响,地下钢质管道必将受其影响,交流输电线路正常运行时,对与它平行敷设的管道将产生干扰电压。据资料介绍,对管道的每10V交流干扰电压引起的腐蚀,相当于0.5V的直流电造成的腐蚀。在高压配电系统中,甚至可产生高达几十伏的干扰电压。另外,交流电力线发生故障时,对附近地下金属管道也可产生高压感应电压,虽是瞬间发生,也会威胁人身安全,也可击穿管道的防腐涂层,故对此作了这一规定。

6.8监控及数据采集


 

6.8.1城市燃气输配系统,宜设置监控及数据采集系统。
6.8.2监控及数据采集系统应采用电子计算机系统为基础的装备和技术。
6.8.3监控及数据采集系统应采用分级结构。
6.8.4监控及数据采集系统应设主站、远端站。主站应设在燃气企业调度服务部门,并宜与城市公用数据库连接。远端站设置在区域调压站、专用调压站、管网压力监测点、储配站、门站和气源厂等。
6.8.5根据监控及数据采集系统拓扑结构设计的需求,在等级系统中可在主站与远端站之间设置通信或其他功能的分级站。
6.8.6监控及数据采集系统的信息传输介质及方式应根据当地通信系统条件、系统规模和特点、地理环境,经全面的技术经济比较后确定。信息传输宜采用城市公共数据通信网络。
6.8.7监控及数据采集系统所选用的设备、器件、材料和仪表应选用通用性产品。
6.8.8监控及数据采集系统的布线和接口设计应符合国家现行有关标准的规定,并具有通用性、兼容性和可扩性。
6.8.9监控及数据采集系统的硬件和软件应有较高可靠性,并应设置系统自身诊断功能,关键设备应采用冗余技术。
6.8.10监控及数据采集系统宜配备实时瞬态模拟软件,软件应满足系统进行调度优化、泄漏检测定位、工况预测、存量分析、负荷预测及调度员培训等功能。
6.8.11监控及数据采集系统远端站应具有数据采集和通信功能,并对需要进行控制或调节的对象点,应有对选定的参数或操作进行控制或调节功能。
6.8.12主站系统设计应具有良好的人机对话功能,宜满足及时调整参数或处理紧急情况的需要。
6.8.13远端站数据采集等工作信息的类型和数量应按实际需要予以合理地确定。
6.8.14设置监控和数据采集设备的建筑应符合现行国家标准《计算站场地技术要求》GB2887和《电子计算机机房设计规范》GB50174以及《计算机机房用活动地板技术条件》GB6550的有关规定。
6.8.15监控及数据采集系统的主站机房,应设置可靠性较高的不间断电源设备及其备用设备。
6.8.16远端站的防爆、防护应符合所在地点防爆、防护的相关要求。


条文说明

6.8监控及数据采集
6.8.1城市燃气输配系统的自动化控制水平,已成为城市燃气现代化的主要标志。为了实现城市燃气输配系统的自动化运行,提高管理水平,城市燃气输配系统有必要建设先进的控制系统。
6.8.2电子计算机的技术发展很快。作为城市燃气输配系统的自动化控制系统,必须跟上技术进步的步伐,与同期的电子技术水平同步。
6.8.4监控及数据采集(SCADA)系统一般由主站(MTU)和远端站(RTU)组成,远端站一般由微处理机(单板机或单片机)加上必要的存储器和输入/输出接口等外围设备构成,完成数据采集或控制调节功能,有数据通信能力。所以,远端站是一种前端功能单元,应该按照气源点、储配站、调压站或管网监测点的不同参数测、控或调节需要确定其硬件和软件设计。主站一般由微型计算机(主机)系统为基础构成,特别对图像显示部分的功能应有新扩展,以使主站适合于管理监视的要求。在一些情况下,主机配有专用键盘更便于操作和控制。主站还需有打印机设备输出定时记录报表、事件记录和键盘操作命令记录,提供完善的管理信息。
6.8.5SCADA系统的构成(拓扑结构)与系统规模、城镇地理特征、系统功能要求、通信条件有很密切的关系,同时也与软件的设计互相关联。SCADA系统中的MTU与RTU结点的联系可看成计算机网络,但是其特点是在RTU之间可以不需要互相通信,只要求各RTU能与MTU进行通信联系。在某些情况下,尤其是系统规模很大时在MTU与RTU之间增设中间层次的分级站,减少MTU的连接通道,节省通信线路投资。
6.8.6信息传输是监控和数据采集系统的重要组成部分。信息传输可以采用有线及无线通信方式。由于国内城市公用数据网络的建设发展很快,且租用价格呈下降趋势,所以充分利用已有资源来建设监控和数据采集系统是可取的。
6.8.8达到标准化的要求有利于通用性和兼容性,也是质量的一个重要方面。标准化的要求指对印刷电路板、接插件、总线标准、输入/输出信号、通信协议、变送器仪表等等逻辑的或物理的技术特性,凡属有标准可循的都要做到标准化。
6.8.9SCADA是一种连续运转的管理技术系统。借助于它,城镇燃气供应企业的调度部门和运行管理人员得以了解整个输配系统的工艺。因此,可靠性是第一位的要求,这要求SCADA系统从设计、设备器件、安装、调试各环节都达到高质量,提高系统的可靠性。从设计环节看,提高可靠性要从硬件设计和软件设计两方面都采取相应措施。硬件设计的可靠性可以通过对关键部件设备(如主机、通信系统、CRT操作接口,调节或控制单元、各极电源)采取双重化(一台运转一台备用),故障自诊断,自动备用方式(通过监视单元Watch Dog Unit)控制等实现。此外,提高系统的抗干扰能力也属于提高系统可靠性的范畴。在设计中应该分析干扰的种类、来源和传播途径,采取多种办法降低计算机系统所处环境的干扰电屏。如采用隔离、屏蔽、改善接地方式和地点等,改进通信电缆的敷设方法等。在软件设计方面也要采取措施提高程序的可靠性。在软件中增加数字滤波也有利于提高计算机控制系统的抗干扰能力。
6.8.10系统的应用软件水平是系统功能水平高低的主要标志。采用实时瞬态模拟软件可以实时反映系统运行工况,进行调度优化,并根据分析和预测结果对系统采取相应的调度控制措施。
6.8.11SCADA系统中每一个RTU的最基本功能要求是数据采集和与主站之间的通信。对某些端点应根据工艺和管理的需要增加其他功能,如对调压站可以增设在远端站建立对调压器的调节和控制回路,对压缩车间运行进行监视或设置由远端站进行的控制和调节。
    随着SCADA技术应用的推广及设计、运行经验的积累,SCADA的功能设计可以逐渐丰富和完善。
    从参数方面看,对燃气输配系统最重要的是压力与流量。在某些场合需要考虑温度、浓度以及火灾或人员侵入报警信号。具体哪些参数列入SCADA的范围,要因工程而异。
6.8.12一般的SCADA系统都应有通过键盘CRT进行人机对话的功能。在需经由主站控制键盘对远端的调节控制单元组态或参数设置或紧急情况进行处理和人工干预时,系统应从硬件及软件设计上满足这些功能要求。